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Natural Language Processing needs substantial amounts of data to make ro-

bust predictions. We compare projects that use various techniques—automatic gen-

eration, crowd-sourcing, and using domain experts—to generate large textual cor-

pora. Specifically, we curate conversational and question answering NLP datasets.

Large-scale data collection is frequently done through crowd-sourcing, but our

question-rewriting task notes the limitation of using this methodology for generat-

ing data. Standard inter-annotator agreement metrics, while useful for annotation,

cannot easily evaluate generated data, causing a serious quality control issue. This

problem is observed while formalizing a question-rewriting task; certain users pro-

vide low-quality rewrites—removing words from the question, copy and pasting the

answer into the question—for this task without checks. We develop an interface to

prevent bad submissions from happening and hand-review over 5,000 submissions.

An alternative low-cost, high-output approach to crowd-sourcing is automa-

tion. We explore this approach by creating a large-scale audio question answering



dataset through text-to-speech technology. We conclude that the cost-savings and

scalability of automation come at the cost of data quality and naturalness.

We mitigate the quality control issues identified in crowd-sourcing and au-

tomation through exploring hybrid solutions. In one hybrid approach, Amazon cus-

tomer service agents are used for curation and annotation of goal-oriented 81,000

conversations across six domains. By grounding the conversation with a reliable

conversationalist—the Amazon agent—we create untemplated conversations and

reliably identify low-quality conversations. The language generated from crowd

workers is severely lower in quality and would not create natural dialogues.

But natural sources of data can be found in specialized communities of in-

terest. We posit that domain experts can be used to create large and var-

ied datasets that do not require extensive quality control. In a study on

the game of Diplomacy, which investigates the language of trust and deception,

Diplomacy community members generate a corpus of 17,000 messages that are self-

annotated while playing a game. The language is varied in length, tone, vocabulary,

punctuation, and even emojis! Additionally, we create real-time self-annotation sys-

tem that annotates deception in a manner not possible through crowd-sourced or

automatic methods.

We propose future work that leverages experts to create two new machine

translation tasks: coreference evalution and cultural adaptation. Identifying relevant

communities for a specific NLP task, and providing a service to them can set new

standards for NLP corpora.
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Chapter 1: The Case for Upfront Investment in Data

Computer science can solve tasks across multiple areas: natural language
processing, computer vision, biology, etc. Solving tasks for all these domains—
translating a sentence between languages, distinguishing a cat and a dog, classifying
a mutation—has two abstract and intertwined dependencies: model-building and
data collection.1 The relationship is intertwined since today’s models are optimized
to draw statistical conclusions from significant amounts of data through machine
learning. But, even the most cutting edge modeling techniques are heavily depen-
dent on having realistic and accurate data for solving a task. Large datasets to
date have primarily been gathered through means of low-cost crowd-sourcing (Deng
et al., 2009; Rajpurkar et al., 2016; Budzianowski et al., 2018). We argue that a
new paradigm of high-quality, expert-reliant data collection can lead to long-term
improvements in Natural Language Processing (nlp).

1.1 Where does Data come from?

In the overview, we discuss the two tasks necessary for data collection and
explain the importance of data quality for computer science as a field.

Data creation can be broadly categorized into two categories: generation and
annotation. We define generation as the creation of a data item that is not previously
available (e.g., sequencing a genome, creating a new image, gathering a new sentence
from a user, or automatically creating a sentence) (Atkins et al., 1992; Goodfellow
et al., 2014; Zhu et al., 2018). We define annotation as the application of a label to
an existing data item (e.g., classifying a part of the genome, labeling an image as a
cat, or describing the sentiment of a sentence) (Deng et al., 2009; Finin et al., 2010;
Kozomara and Griffiths-Jones, 2014). In many fields, data must be both generated
to be representative of the task and then accurately annotated to be effective.

The demand of neural models for quantity has caused models to be trained
on large, noisy data (Brown et al., 2020). The building blocks of other research
areas—gene sequences in biology and individual pixels in computer vision—are not
readily human interpretable by default. In more human-intuitive fields like natural
language processing, the data has reached the scale where its veracity—the certainty
and completeness of the data—cannot be assumed (Qiu et al., 2016). As a result,
reformatting and preprocessing the data is necessary for training models (Hinton and

1 Mitchell (1997) defines a machine learning model as,“A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E”. Data collection is the experience E.
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Salakhutdinov, 2006). This obfuscation from data type or sheer quantity can mask
biases and artifacts, as they are no longer obvious to the naked human eye (Pruim
et al., 2015; Gururangan et al., 2018). Atkins et al. (1992) posit that,“there is in
fact little danger of obfuscation for the major parameters that characterize a corpus:
its size (in numbers of running words), and gross characterizations of its content.”
However, the objectivity of size is questionable; a corpus consisting of the same word
repeated a million of times clearly differs from one with a million unique words. They
crucially comment that the evaluation of corpora has not been standardized. This
focus on size above quality has shaped data creation during the past decade. Since
current approaches to machine learning often obscure how decisions are made by
a model, the quality of the data is likely neither carefully evaluated by human nor
machine.

The current paradigm of crowd-sourcing—“the practice of obtaining needed
services, ideas, or content by soliciting contributions from a large group of people
and especially from the online community rather than from traditional employees
or suppliers”(Merriam-Webster)—for dataset creation has been the main impetus
of unreliability in data. Specifically, Natural Language Processing has generally
depended on low-cost crowd-sourcing following the popularity of ImageNet (Deng
et al., 2009). However, the entirely crowd-sourced annotations thereof still have
notable problems after a decade of updates (Yang et al., 2020) and should serve as
a cautionary tale. A re-prioritization to working with communities of interest that
have a non-financial incentive and verified contributors to generate realistic data is
a solution to this problem.

We argue that investing in reliable data upfront, using experts, can address
quality control issues and lead to further model accuracy. This improvement in
the quality and diversity of data is a prudent long-term investment as high-quality
datasets can have shelf-lives of decades (Marcus et al., 1993; Miller, 1995a) while
model architectures are frequently supplanted (Vapnik, 1995; Kim, 2014). Addition-
ally, experts can enable tasks in computer science not otherwise possible; generalists
cannot annotate medical images and generalists that do not speak a given language
cannot generate believable sentences.

1.2 Natural Language Processing

We focus on specifically Natural Language Processing (nlp) since computer
science is too broad of a field to cover. We introduce the nlp tasks covered in our
work, challenges faced in nlp due to data quality, and the various methods of data
collection which impact this quality.

A large focus of nlp is on building models that exploit patterns in language
data to solve a variety of tasks: question answering, conversational agents, ma-
chine translation, information extraction, etc. However, in the current paradigm
of machine learning, models can only answer questions or make translations that
they have seen before. This makes robust and natural data a prerequisite for any
meaningful model.
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The increasing dependence on neural models has exacerbated the focus on
dataset size. Chapter 2 describes the history of data collection in nlp and explains
why this dependence has grown over time. At the extreme end, GPT-3 is trained
on 499 billion tokens, which is the closest anybody has come to training a model
based on the entire Internet (Brown et al., 2020). However, not everything on the
Internet is relevant or accurate. Training data containing low-quality data unsur-
prisingly leads to models learning controversial or false conclusions, with high levels
of confidence (Wolf et al., 2017; Wallace et al., 2019a).

Additionally, many tasks in nlp depend on accurate annotation. As a thought
experiment, if all verbs are labeled as nouns and all nouns are labeled as verbs in the
training data, a perfectly designed language model would be confidently wrong in
its predictions. Crowd-sourcing with generalists (Buhrmester et al., 2011) assumes
that enough unspecialized workers will answer a question correctly. This is a valid
assumption for unambiguous, multiple-choice annotation with a large amount pool
of annotators. However, many tasks require language generation, which cannot be
easily verified through iaa. As a result, the nlp corpora for a given task may not be
reflective of the actual task. This motivates high-quality generation and annotation
for nlp.

We propose an expert-driven paradigm for collecting nlp corpora. First, we
show limitations of using unspecialized and automated methods of data collection in
Chapter 3. Second, we discuss hybrid approaches—using verified experts paired with
external, low-cost data sources (Vukovic and Bartolini, 2010)—in Chapter 4. Third,
we describe an expert-designed experiment on evaluating coreference translation
between German-English in Chapter 5. This type of work is impossible without
collaboration between native speakers in both languages and indirectly evaluates the
quality of training data. Fourth, we describe a completely expert-filled experiment
on deception involving the board game of Diplomacy in Chapter 6; this project
represents a task that could not be meaningful without the use of experienced board
game players willing to dedicate a continuous month. We propose an additional
project in Chapter 7 that can only be verified with an expert-defined gold standard.

1.3 Proposal

Our past work establishes that the quality of datasets can vary significantly
based on who creates the data: experts or generalists. Chapter 7 proposes to extend
the use of experts to another subfield of nlp: machine translation, which stands
to benefit from increased scrutiny of data quality. This subfield now relies on a
crowd-sourcing paradigm for both generation and annotation (Cer et al., 2017; Clark
et al., 2020a) and stands to benefit from increased scrutiny. We propose cultural
adaptation, a new complicated task that requires cultural experts for evaluation.

A challenge for modern data-hungry natural language processing (nlp) tech-
niques is to replicate the impressive results for standard English tasks and datasets
to other languages. Literally translating text into the target language is the most
obvious solution. This can be the best option for tasks such as sentiment anal-
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ysis (Araujo et al., 2016), but for other tasks such as question answering, literal
translations might miss cultural nuance if you directly translate questions from En-
glish to German to provide additional training data. While this might allow question
answering systems to answer questions about baseball and Tom Hanks in German,
it does not fulfill the promise of a smart assistant answering a culturally-situated
question about Oktoberfest. One can find applicable Named Entity modulations
by referencing WikiData, a human-interpretable and human-verified representation
of Wikipedia. We will want to investigate if this method generates better candi-
dates than an embedding-based approach: namely word2vec. We focus on the task
of cultural adaptation of entities: given an entity in English, what is the corre-
sponding entity in a target language. For example, the German Anthony Fauci is
Christian Drosten. An accurate evaluation of this approach requires using Germans
and Americans with appropriate cultural backgrounds. This project will show that
expert judgment can evaluate a new task in machine translation.
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Chapter 2: Natural Language Processing Depends on Data

In this chapter, we discuss the history of nlp, the nlp tasks relevant for our
work, and the three types of data collection discussed in this proposal.

The history of nlp outlined in Section 2.1 explains the current dependence
on data. Developments in the fields of statistics and linguistics led to the use of
raw training data for building of language models. But each nlp task requires its
own bespoke training data, such as parallel training data for machine translation.
Specifically, we discuss relevant past work for question answering, dialogue, and
machine translation in Section 2.2 as background for our research. Certain tasks
for these subfields are unable to be solved with naturally-found data and require
dataset creation.

Different types of users can generate and annotate the data needed for these
language models. Unspecialized users can be asked to solve tasks through crowd-
sourcing and automated methods can be used to generate data at scale (Sec-
tion 2.3.3). Hybrid approaches combine cheap and large-scale methods with experts
that verify the results (Section 2.3.4). Lastly, data can be gathered and annotated
exclusively using experts (Section 2.3.5). We provide the necessary background and
past work relevant to these three data pools in Section 2.3. We explain the models
and metrics that are used in solving these tasks in Section 2.4.

2.1 How Language Models Begot Training Data

The developments of computers and the increasing importance of statistics
in linguistics brought forth Natural Language Processing. The major milestones
are the development of Zipf’s Law, information theory, artificial intelligence, and
universal grammar, which are discussed in chronological order.

First, Zipf (1935) introduced Zipf’s Law, which notes that there is a strong
relationship between the rank of a word and its frequency: the first-order word occurs
notably more often than the second-order word, the second-order word occurs more
often than the third-order word, and so on. This statistical distribution of language
is necessary for machine learning to work and this insight applies not only to words,
but to phrases (Williams et al., 2015), language learning (Powers, 1998), and many
non-nlp phenomena such as website usage (Jiang et al., 2013).

Following this insight, Shannon et al. (1949) proposed information theory,
which reduces linguistic information to a numerical representation. Fundamentally,
information theory is a method to distinguish signal from noise. The theory intro-
duces entropy and perplexity in language as measures of the unexpectedness of a
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word in a given sentence. “Computer” is more likely to be followed by “science” than
“aardvark”. This metric crucially provided a way to think about language models,
which predict a future word (or character).

In parallel, Artificial Intelligence proposed that machines can learn to distin-
guish the signal from the noise, akin to humans. Alan Turing proposed the Turing
Test to evaluate if a machine can converse in a manner indistinguishable from a
human (Turing, 1950). The test explores if the variance among humans is large
enough for a clever computer to fool a human judge. Obviously one cannot have a
conversation with a machine in the first place without nlp! Crucially, at this period
of time computer science was still largely a theoretical and not an applied field.

Linguistics had also developed a statistical insight in the 20th century, mainly
with the insights of Firth and Chomsky. J.R. Firth declared that, “you shall know a
word by the company it keeps” (Firth, 1957). This insight serves as the foundation of
embedding-based representations of language in modern-day nlp. Chomsky (1986)’s
Universal Grammar serves as a stepping stone between linguistics and information
theory. The existence of an innate predisposition to language in children, rather
than a dependence on learning everything, precipitates the application of statistics
to language. If grammar can be universal, why could statistics not be applied to all
languages in a universal manner? These developments across different fields led to
the emergence of language models built with data, rather than rules in nlp.

The language model has created the dependence on training data, with which
this proposal is concerned. Performing language tasks with simplified rules and
limited vocabulary was the paradigm for linguistics (Wittgenstein, 1953; Berko,
1958). Statistical language modeling was proposed in the 1980s (Rosenfeld, 2000)
and has slowly taken over linguistic journals as the dominant approach for solving
language tasks. The co-occurrence of words in the form of a n-gram model became
the paradigm.

P (wi|hi) = P (wi |wi−n+1, . . . , wi−i) (2.1)

where wi is the ith word in a sentence and hi is the history of words that came before.
Furthermore, this method can be applied to any symbols, and not just language.

This type of language model is entirely dependent on training data due to its
lack of any constructed rules or linguistic knowledge. A language model trained
on inaccurate and nonsensical language data will confidently predict nonsense, as it
has no understanding of rules, grammar, or language. A machine has no intrinsic
understanding of what is signal and what is noise, and it is up to the intrepid
scientist to specify how a snippet of language should be correctly understood by
the machine. The probability of “computer science” occurring more often than
“computer aardvark” in a language model is subject entirely to the training data
rather than any ontological or linguistic truth.

The most obvious option for training this language model is to use easily-
found, naturally-occurring data. The development of the Internet in particular led
to an explosion of available textual data for language models. The amount of data
created from 2010 to 2017 has increased 13-fold.1 The latest raw text models are

1https://www.statista.com/statistics/871513/worldwide-data-created/
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trained on de facto the entire Internet (Brown et al., 2020). There appears to be a
limit to how much a language model can learn from statistics without understanding
language, but that limit has not yet been ascertained.

Language models can be created for different nlp tasks, but each requires a
different type of training data. For example, machine translation requires parallel
text, which increases the standard for training data quality.

2.2 Tasks

We focus on three nlp tasks in our research: Machine Translation, Question
Answering, and Dialogs.

2.2.1 Machine Translation
Machine translation was one of the earliest uses of nlp. One needs text from

multiple languages for this task, which led to the collection of parallel texts across
languages. We discuss several key datasets in the area.

Machine translation as a nlp task only dates back half a century. Yet it has
already undergone dramatic changes in methodology. The Georgetown Machine
Translation experiments translated dozens of sentences from Russian into English
in 1954 (Hutchins, 2004). The system used a rules-based approach that encoded
grammar and lexical endings to convert the input sentence to the target language.
This proof of concept began a decade of research into the topic, until a realistic
assessment of results concluded that machine translation could not be solved in
several years, as initially presumed.

The rise of statistical machine translation began with the recognition that
parallel French-English text from the Canadian parliament could be used to train
more flexible models than previously possible (Berger et al., 1994). Thinking of
languages as a noisy channel model—English is a garbled version of French—allowed
researchers to align parallel corporate and learn how language can be automatically
translated. The equation is:

ê = argmax
e

p(e|f) (2.2)

where e is the English word and f is the French word.
Since this development, parallel corpora have been sought after in every con-

ceivable domain. The Bible, books, medical records, and the Internet predate nlp.
The Bible (Resnik et al., 1999) is a prime example of a corpus that when annotated
can provide parallel data for “2000 tongues”.2 Literature and movie captions (Varga
et al., 2007), librettos (Dürr, 2005), medical information (Deléger et al., 2009), and
the Internet (Resnik and Smith, 2003; Smith et al., 2013) can all be sources of par-
allel data. The independent growth of these corpora will provide language models
with found data, which can be used for training supervision.

2In this case, only for a dozen tongues.
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Dataset # of Sentences Data Source
ContraPro 12,000 Found
Canadian Parliament 1,300,000 Found
EuroParl 11,000,000 Found
TyDi 204,000 Crowd
MLAQ 12,000 Hybrid
XQuAD 1,190 Expert

Table 2.1: A tabular summary of machine translation datasets.

What is the English meaning of caliente?
What is the meaning of caliente (in English)?
What is the English translation for the word “caliente”?

Table 2.2: Three questions from trec 2000 data that are believably varied. The
test questions were carefully crafted by experts.

Data generation has become necessary for this subfield given the large amount
of data required, and all the possible languages to cover. The Workshop on Machine
Translation facilitates model-building for machine translation (Koehn and Monz,
2006). Statistical Machine Translation has been supplanted by neural machine trans-
lation (Wu et al., 2016). mlqa and xquad automatically generate paired questions
through machine translation (Lewis et al., 2019; Artetxe et al., 2019) TyDi (Clark
et al., 2020a) gives crowd-sourced users prompts from Wikipedia articles. Our pro-
posal introduces a new machine translation task, cultural adaptation, that requires
collecting translations from cultural experts for gold standard evaluation.

2.2.2 Question Answering
Another task heavily dependent on training data is Question Answering (qa).

In the current machine learning paradigm, qa can only answer a question with a
previously seen answer. Therefore, the coverage of questions and answers is impor-
tant as models trained on trivia questions cannot answer inquiries about medical
symptoms, and vice versa. We discuss the relevant history of question answering
and review the most relevant datasets.

The Text Retrieval Conference established Question Answering as an annual,
formalized task (Voorhees et al., 1999). The questions were carefully curated every
year and modifications to the question answering task were made. Table 2.2 shows
examples of questions that are intended to fool systems reliant on literal information
extraction.

The neural era ushered in larger more diverse Question Answering datasets,
with squad (Rajpurkar et al., 2016, 2018a) being the most popular leaderboard
for models. The amount of questions went from being measured in the hundreds
to being measured in the hundreds of thousands. Example questions are provided
in Table 2.3. Large influential question answering datasets include squad 1.0 (Ra-
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Questions Answers
“Which laws faced significant opposition?” later laws
“What was the name of the 1937 treaty?” Bald Eagle Protection Act

Table 2.3: The paper examples from squad. In contrast with Table 2.2, these
questions are done through crowd-sourcing and Wikipedia and are not carefully
planned.

Dataset # of Questions Data Source
CoQA 8,000 Crowd
squad 1.0 100k Crowd
squad 2.0 50k Crowd
quac 100k Crowd
TriviaQA 95k Hybrid
Quizbowl 100k Hybrid
Natural Questions 300k Hybrid
MS Marco 1000k Found
trec-8 200 Expert
Trick Me 651 Expert

Table 2.4: A tabular summary of key question answering datasets. The datasets de-
scribed as hybrid all scrape or use naturally-occurring language and then supplement
it with crowd-sourced annotation.

jpurkar et al., 2016), squad 2.0 (Rajpurkar et al., 2018a), MS Marco (Bajaj et al.,
2016), TriviaQA (Joshi et al., 2017) quac (Choi et al., 2018), Quizbowl (Rodriguez
et al., 2019), and Natural Questions (Kwiatkowski et al., 2019). We summarize the
size of these datasets and their user pools in Table 2.5.

These datasets are frequently instances of machine reading comprehension (Ra-
jpurkar et al., 2016, mrc), which requires that computers can take a single ques-
tion and select the answer from a passage of text. However, qa models struggle
to generalize when questions do not look like the standalone questions systems
in training data: e.g., new genres, languages, or closely-related tasks (Yogatama
et al., 2019). Unlike mrc, conversational question answering requires models to
link questions together to resolve the conversational dependencies between them:
each question needs to be understood in the conversation context. For example,
the question “What was he like in that episode?” cannot be understood without
knowing what “he” and “that episode” refer to, which can be resolved using the con-
versation context. CoQA creates conversational question answering around different
domains–Wikipedia, children’s stories, News Articles, Reddit,literature, and science
articles–by pairing Mechanical Turk crowd-sourced workers together (Reddy et al.,
2019).

Creating questions in languages other than English is another current re-
search direction as touched upon in Section 2.2.1. mlqa (Lewis et al., 2019),
xquad(Artetxe et al., 2019), and TyDi (Clark et al., 2020a) are recent examples.
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Dataset # of Questions Data Source
DSTC2 1,612 Found
Ubuntu Dialog 930,000 Found
Reddit 256,000,000 Found
OpenSubtitles 316,000,000 Found
DSTC2 1,612 Crowd
CoQA 8,000 Crowd
MultiWOZ 8,438 Crowd

Table 2.5: A tabular summary of key question answering datasets. The datasets de-
scribed as hybrid all scrape or use naturally-occurring language and then supplement
it with crowd-sourced annotation.

Recent work has began to acknowledge that crowd-sourced users may not
be an optimal source for data or participants. Wallace et al. (2019b) work with
the Quizbowl community to rewrite questions be adversarial. Clark et al. (2020b)
emphasize that natural speakers of a language must be used to write authentic
questions in languages outside of English, although the source of theses speakers
is still crowd-sourced unverified users as they do not have other scalable access to
speakers of typologically diverse languages. Boyd-Graber (2020) calls into question
the paradigm of using crowd-sourced workers as the measure for human baselines,
rather than evaluating through a play test.

2.2.3 Dialogs
Like question answering, conversational datasets have been gathered for dif-

ferent purposes and with different techniques. We provide a brief history of conver-
sational datasets and summarize the relevant datasets.

Existing found conversational data has been repurposed as nlp datasets.
Ubuntu threads provide millions of conversations of technical support (Lowe et al.,
2015). Reddit, a collection of threaded comments about diverse subjects, and Open-
Subtitles, collections of movie and television subtitles, provide millions of sentences
as training data (Henderson et al., 2019).

However, found datasets cannot cover all domains and languages. There-
fore, generating conversational datasets becomes a nlp need. The Dialog State
Tracking Challenge (Henderson et al., 2014) formalizes the dialog task on an an-
nual basis and creates several relatively-small, crowd-sourced datasets focusing on
different conversational tasks. MultiWOZ proposes a framework for simulated con-
versations, which is necessary for domains containing sensitive data that cannot be
released (Budzianowski et al., 2018).
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2.3 Data Collection Type

Training and test data for machine learning can come from one of four sources:
automation, crowd-sourcing, a hybrid mix of the crowd with experts, and exclusively
experts. We discuss the seminal work for each of these data pools.

2.3.1 Finding
Reusing existing text through scraping websites or forums and re-purposing

historical documents can create datasets with little effort. We define the this type
of data as found.

The Internet contains enormous amounts of information that is varying in
quality. Amazon reviews (McAuley et al., 2015), Twitter (Banda et al., 2020), and
Wikipedia (Vrandečić and Krötzsch, 2014) provide language from unverified users
on the Internet. These datasets are large, but contain noise due to having a low
barrier to entry for contributors.

Higher quality datasets often come from organizations that have an incentive
to control or report their data. Enron emails are original emails collected into a
dataset (Klimt and Yang, 2004). EuroParl is collected from professionally translated
official documents (Koehn, 2005). Literature comes from a verified author (Iyyer
et al., 2016), as does journalism (Lewis et al., 2004). The Titanic had an accurate
list of passengers. The United Nations maintains detailed datasets about global
populations. New York City releases the Taxi and Limousine Commission data.
The World Trade Organization releases a comprehensive collection of legal disputes.

The original source of this type data can be experts (e.g., World Trade Orga-
nization lawyers and translators) or they can be unverified online users (e.g., Reddit
users). Since this data was not intentionally intended for nlp, annotation is often re-
quired. Additionally, found data can be created by experts or unverified generalists,
depending on the task and the desired quality.

2.3.2 Automation
Not all data necessary for nlp can be found. Therefore, data generation be-

comes necessary. Synthetic data can be created according to fixed rules or templates,
which we refer to as automation. Augmentation is a frequent phrasing of this way
of creating data (Kafle et al., 2017). This method can create datasets of any scale,
but it does not guarantee their authenticity.

Templates can be used to create datasets unlimited in scale, but dubious in
realism. Filatova et al. (2006) generate questions using specific verbs for various
domains: airplane crashes, earthquakes, presidential elections, terrorist attacks. In
their own words, their automatically created templates are “not easily readable by
human annotators” and the evaluation requires a lengthy discussion. Examples of
questions generated though templates include the following nonsensical questions
about specific earthquakes:

• Is it near a fault line?
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• Is it near volcanoes?

Mozafari et al. (2014) propose using active learning to minimize the human
effort needed to gather large-scale datasets; one gathers annotations for a subset of
the data and then extrapolates those labels to similar unlabeled data. This serves
as a segue into the next type of data creation method: crowd-sourcing.

2.3.3 Crowd-Sourcing
We define crowd-sourcing and automatic data generation techniques, explain

their history, and comment on the repercussions of the wide-spread use of this
data pool in nlp today. Crowd-sourcing is “the practice of obtaining needed ser-
vices, ideas, or content by soliciting contributions from a large group of people and
especially from the online community rather than from traditional employees or
suppliers” (Merriam-Webster). Crowd-sourcing, in the applied sense, relies on un-
specialized users and is the most popular way to create new datasets in nlp today.

The reliance on crowd-sourcing low-cost labor is a phenomenon just over a
decade old. Deng et al. (2009) built ImageNet using Mechanical Turk—a crowd-
sourcing marketplace that makes it easier for individuals and businesses to outsource
their processes and jobs to a distributed workforce who can complete these tasks
virtually (Amazon, 2021)— crowd-sourcing for annotating WordNet with images,
which ushered in this paradigm. Visual classification tasks are maximally simple
in nature since annotators are asked to decide if an image contains a Burmese cat.
Despite this, disagreement is a major problem and a minimum of 10 users are used
to guarantee a level of confidence. Even with constant updates, the dataset still
has limitations a decade later from the initial scaling methodology used to create
it (Yang et al., 2020).

Crowd-sourcing spread to other disciplines other than machine vision as a
source for research data. Buhrmester et al. (2011) claim that Amazon Mechanical
Turk gathers “high-quality data inexpensively and rapidly” for psychology. However,
the evidence for this claim stems from having participants fill out a survey and is
primarily evaluated on the time required, rather than the quality of the final result.
In their survey, users report that their motivation for using Mechanical Turk is
higher on a Likert scale for enjoyment than for payment. Given that nearly every
nlp task requires that users complete a large amount of previous tasks (1000+) and
with a nearly perfect accuracy (90%+), this claim seems unlikely to hold for the
average producer of nlp data. As a note of caution, Mason and Suri (2012) claim
that spammers are likely to target surveys on Mechanical Turk.

Crowd Flower, renamed as Figure Eight, is a platform similar to Mechanical
Turk, but with a focus on quality control. While Mechanical Turk keeps track of
Human Intelligence Tasks (hit)—the name for each individual task—accuracy rates,
this metric depends on task providers to manually evaluate the data and provide
feedback about the worker. Needless to say, this level of oversight is unlikely to be
done carefully for thousands of tasks. Crowd Flower’s innovation is to include a test
set with each task which monitors that users’ responses correspond to gold labels.
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Furthermore, creating a crowd-sourced dataset with crowd-flower is possible for
annotation but not for generation. As early adopters of crowd-sourcing, Finin et al.
(2010) use Crowd Flower for annotating named entities in Twitter. However, most
annotations are completed by a few prolific workers, which opens up the dataset to
potential biases.

From computer vision annotation, crowd-sourcing transferred over to natural
language processing (Callison-Burch et al., 2015). Using a nonprofessional user pool
is the default manner for collecting large datasets for nlp as it can generated and
annotated quickly and cheaply. As on example, large question answering datasets
involving Wikipedia and search engines—squad, SearchQA—use crowd-sourcing to
generate questions (Rajpurkar et al., 2016; Dunn et al., 2017a).

The two main benefits to this data source are the cost and the rapid rate of
data collection. The cost is unquestionably lower for an employer or researcher to
use the crowd rather than internal employees. Crowd workers are paid a fraction
of what full-time employees would receive for the same task and do not receive
any benefits (Whiting et al., 2019).3 Largely due to the variations in cost-of-living
around the world and flexibility of the work, the pay is appealing to some workers.
The demographics of the platform more accurately model the United States than
the average college student, at least for psychology experiments (Buhrmester et al.,
2011). As a result, Amazon Mechanical Turk has over a hundred-thousand workers,
thousands of which are available at any moment (Difallah et al., 2018). Modu-
lar tasks can be completed in hours in crowd-sourcing, as thousands of temporary
workers complete tasks faster than a handful of employees.

The con to crowd-sourcing is that quality control becomes the central challenge
for crowd-sourcing nlp data. Mathematically, average accuracy needs to exceed
50% for reliable annotators to overcome their noisy peers (Kumar and Lease, 2011).
Given that certain tasks are highly sparse, this is not a threshold that is always
achievable. Zaidan and Callison-Burch (2011) show that data gathered from crowd-
sourcing for machine translation nets a bleu score nearly half the size of professional
translators, and only one point higher than an automatic machine translation ap-
proach. Other studies have shown that users tend to voluntarily provide inaccurate
data (Suri et al., 2011) and misrepresent their background (Chandler and Paolacci,
2017; Sharpe Wessling et al., 2017). Last, there is an upper-bound to the com-
plexity of crowd-sourced tasks. Crowd workers have been shown to become less
reliable and efficient for tasks that are not straightforward (Finnerty et al., 2013).
As a tangential consideration, legal regulation may ultimately limit the effective-
ness of this technique, since it is completely unregulated by current employment
practices (Wolfson and Lease, 2011).

2.3.4 Hybrid
Hybrid approaches aim to enhance crowd-sourcing by overseeing unspecialized

labor or automatic methods with expert knowledge. This combination lowers cost
3This clearly is not a pro from the worker’s perspective.
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and allows for data scaling, while maintaining a certain level of quality control. We
define hybrid user pools and discuss past projects.

We define hybrid data collection sources as any that combine a cost-saving
pool, such as crowd-sourcing or automation, with expert supervision. This is a
natural extension of crowd-sourcing and does not require as detailed of a historical
overview: once quality issues were noted, attempts were made to remedy them. For
generation, crowd-sourced workers can be combined with trained agents to create
data for a given nlp task. For annotation, crowd-sourced workers can be supervised
by trained experts.

As an illustrative example, Zaidan and Callison-Burch (2011) propose an
oracle-based approach to identify the high quality crowd-sourced workers and rely
on their judgments. The paper claims that crowd-sourcing can lead to a notable re-
duction in cost without a complete loss in quality. Their approach crucially depends
on having expert (professional) translations as a reference point.

Numerous other approaches have proven successful for a myriad of tasks.
Kochhar et al. (2010) use a hierarchical system for database, specifically Freebase,
population. First, an item is populated by automatic methods, then issues are esca-
lated to volunteer users, and any remaining issues are escalated to trained experts.
Ade-Ibijola et al. (2012) design a system for essay-grading that allows for teacher
oversight and compare their results to area experts. Hong et al. (2018) optimize the
productivity of medical field experts by providing additional reference resources and
standardizing databases. fever (Thorne et al., 2018a) relies on super-annotators
on one percent of the data as a comparison point for all other annotations for fever.
Errors made by crowd-sourced workers on Named Entity Recognition can be clus-
tered and identified, which in turn can be escalated to a skilled arbitrator to improve
task guidance (Nguyen et al., 2019). Combining trained and untrained workers can
be used for generating Wizard-of-Oz personal assistant dialogs (Byrne et al., 2019).

Furthermore, there are two crowd-sourcing platforms whose business model re-
lies on this hybrid approach. Crowd Flower, mentioned in Section 2.3.3, attempts to
booster the reliability the crowd by requiring the task master to create gold-standard
test questions, which are interspersed among the data being collected (Vakharia and
Lease). While not necessarily using experts, this provides an automatic quality fil-
ter that down-weights the reliability of annotations made by the least accurate–as
determined by the gold-standard test set—annotators. Crucially, this approach can
only work for annotation, as generation quality cannot be quickly assessed. ODesk
is a crowd-sourcing platform that provides a hybrid approach, as it relies on crowd-
sourcing from the Internet, but vets the participants to have a matching skill-set for
the task (Vakharia and Lease).

2.3.5 Expert
We define “experts”, provide a brief summary of relevant datasets, and intro-

duce a dataset generated and annotated by domain experts.
We formally define “expert” as “a person with a high level of knowledge or skill

relating to a particular subject or activity”Cambridge Dictionary. For nlp, this
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requires that the person have some sort of incentive to accurately, as opposed to
quickly, complete their task. These experts can be trained or they can be found in
specialized communities of interest. The amount of expert-only datasets for nlp are
limited due to the high cost associated with hiring experts and quality assurance.
Given the increasing investment and interest in the field, this route for data collection
will be the best long-term investment. We discuss existing sources of this kind of
data, methods for generating language data, and methods for annotating language
data.

Language recorded naturally for other purposes has led to datasets that have
withstood the test of time. The United Nations, New York City, and the World
Trade Organization are all organizations that release reliable large-scale data, as
discussed in Section 2.3.1.

However, existing, or found, data sources do not cover all nlp tasks and do-
mains. Therefore, generation by experts is necessary. The best example of this in
nlp is WordNet, which was built in the 1980s. The ontology was carefully crafted us-
ing a small batch of Princeton psychology graduate students—arguably some of the
best experts in the English language and unarguably participants with a strong in-
centive to provide meaningful data—over an extended period of time (Miller, 1995a).

Annotations are possible to collect from non-experts, but often at the expense
of their accuracy. Programmers can self-annotate their code for easier future ac-
cessibility (Shira and Lease, 2010). Hate speech annotation is more accurate with
expert annotators than amateur ones (Waseem, 2016). In the medical field, the
lack of expert annotation poses a barrier to large-scale nlp clinical solutions (Chap-
man et al., 2011). Unsurprisingly, doctor annotation is more accurate than online
generalist annotation for medical diagnoses (Cheng et al., 2015).

Multiple studies comparing the quality of crowd-sourced work and expert work
have been done. Mollick and Nanda (2016) compare expert to crowd judgment for
the funding of theater productions. They conclude that most decisions are aligned
between the two pools, but that crowds are more swayed by superficial presentation
than underlying quality. Leroy and Endicott (2012) compare annotations of text
difficulty between a medical librarian and a non-expert user and do not see a large
difference on a small sample size.

2.4 Models & Metrics

Data does not exist in a vacuum. Therefore, we summarize popular models
used with the data, and the metrics used to evaluate models and data.

2.4.1 Logistic Regression
According to Jurafsky and Martin (2000), the logistic regression is a basic

discriminative model, meaning that it can classify items into one of several classes.
It relies on using features x to predict class y by learning a vector of weights, w,
and a bias term, b according to:
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z = w · x+ b (2.3)

z is then passed through a sigmoid function to transform the values to a
probability:

y = σ(z) =
1

(1 + e( − z))
(2.4)

There are two phases to logistic regression: training and test. During training,
stochastic gradient descent and cross-entropy loss learn the optimal weights of w and
b. Cross-entropy loss calculates the difference between the predicted ŷ and the true
y. The gradient descent algorithm (Ruder, 2016) finds the minimum loss.

At test time, for each example the highest probability label is predicted. Multi-
nomial logistic regression allows for the prediction of more than two classes.

Other important parts of logistic regression, and machine learning more broadly,
are batching—calculating gradient across multiple examples at once to have a bet-
ter estimate in which direction to adjust weights—and regularization (Tibshirani,
1996)—penalizing large weights in the function to generalize results from the train-
ing data to unseen data.

The logistic regression model is interpretable since the weight of each feature
is transparent in the final prediction. Certain features have higher weights than
other ones. This has made the logistic regression a popular baseline model for
machine learning. Its interpretability with the current state-of-the-art model: neural
networks.

2.4.2 Neural Models
Neural networks are an old idea that gained widespread adoption the last

decade. The idea of a perceptron was proposed as early as the 1940s (McCulloch
and Pitts, 1943). Backpropogation, the training algorithm behind a neural network,
was proposed in 1986 (Rumelhart et al., 1986). However, it was not until the
21st century that computing infrastructure allowed neural networks to be effectively
applied. AlexNet applied to the ImageNet classification dataset shows a sizable
improvement over past machine learning methods (Krizhevsky et al., 2012).

Neural networks are a more powerful classifier than logistic regressions and
can be shown to learn any function. Additionally, they often avoid dependence on
carefully crafted features and learn their own representations for the task(Jurafsky
and Martin, 2000). Further research into deep learning created deeper and com-
putationally more expensive neural networks, specifically for machine vision. From
there, the application of neural networks branched out into other domains, including
nlp.

All neural networks depend on a loss function and backpropogation The loss
function tells the neural network how quantitatively wrong a prediction is. Popular
loss functions include Cross Entropy Loss—often used for logistic regression and
classification tasks— and Mean Squared Error (Sammut and Webb, 2010). Back-
propogation percolates weight adjustment with the chain rule throughout the entire
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Figure 2.1: Krizhevsky et al. (2012)’s cnn architecture.

network. This is based on the derivative of the error, which is calculated through
the loss function. Additionally, rather than relying on n-gram language models
(Section 2.1), neural language models reference prior context as embeddings that
represent the word(s). This means that the neural network can understand that
“cat” and “dog” are similar, and can be treated similarly, whereas a n-gram model
assumes independence. word2vec (Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014) embeddings are commonly used pre-trained embeddings. This powerful
innovation allows has led to the current state-of-the-art dependence on Transformers
(Section 2.4.5).

Model architectures have evolved over time in nlp. Convolutional Neural
Networks (cnn) (Krizhevsky et al., 2012) applied to ImageNet kicked off the appli-
cations of deep neural networks. Figure 2.1 shows the architecture of that model.
A cnn has several convolution layers that alter the input, as well as pooling lay-
ers that condense the input. This architecture is relevant for machine vision in
particular since clusters of pixels, rather than an individual one are important for
understanding the content of an image.

We focus on their successors: Deep Averaging Networks (Section 3.1) and
Recurrent Neural Networks (Section 2.4.4) in our research.

2.4.3 Deep Averaging Network
The Deep Averaging Network, or dan, classifier proposes a simple architecture

with comparable results to more complicated neural models. It has three sections:
a “neural-bag-of-word” (nbow) encoder, which composes all the words in the doc-
ument into a single vector by averaging the word vectors; a series of hidden trans-
formations, which give the network depth and allow it to amplify small distinctions
between composed documents; and a softmax predictor that outputs a class.

The encoded representation r is the averaged embeddings of input words. The
word vectors exist in an embedding matrix E, from which we can look up a specific
word w with E[w]. The length of the document is N . To compute the composed
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representation r, the dan averages all of the word embeddings:

r =

∑N
i E[wi]

N
(2.5)

The network weights W, consist of a weight-bias pair for each layer of transfor-
mations (W(hi), b(hi)) for each layer i in the list of layers L. To compute the hidden
representations for each layer, the dan linearly transforms the input and then ap-
plies a nonlinearity: h0 = σ(W(h0)r + b(h0)). Successive hidden representations hi

are: hi = σ(W(hi)hi-1 + b(hi)). The final layer in the dan is a softmax output:
o = softmax(W(o)hL + b(o)). This model is used and modified in Chapter 3.

2.4.4 Sequence to Sequence
Unlike the dan, Recurrent Neural Networks (rnn) (Elman, 1990) take into

account the sequence of the input, which is important given the ordered nature of
language.

The long short-term memory (lstm) (Gers et al., 1999) modifies the rnn by
allowing it to discard past information.

According to Goldberg (2017), Sequence to Sequence refers to a model that
ingests a sequence of text and then generates a sequence of text, rather than a single
classification, as an output. The architecture necessary for this is called Encoder-
Decoder, as the text input is first encoded—meaning a sequence of text has been
transformed into a numerical representation—and then decoded—this representa-
tion is then transformed back into text. Machine translation (Section 2.2.1) is a clear
example where this applies. If a sentence in German needs to be transformed into
English, then the German sentence is first encoded into a numerical representation
and then decoded into an English sentence. Attention (Bahdanau et al., 2014) looks
at different parts of the encoded sequence at each stage in the decoding process.
Visualizing attention provides a mild level of interpetability as the model looks at a
specific part of the input. We use these models in Chapters 4 and 6, as the current
state of the apart for nlp.

2.4.5 Transformers
The Transformer model simplifies the architecture and dispenses with recur-

sions and convolutions (Vaswani et al., 2017), relying instead entirely on attention.
elmo (Peters et al., 2018), used in Chapter 4, improves on GloVe embed-

dings (Pennington et al., 2014) by allowing a word’s embedding to adjust to the
context, rather than being committed to having a single word sense. bert improves
the embeddings further by looking at context bidirectionally, meaning that words
that follow a word influence its embedding. These pre-trained embeddings can be
further fine-tuned to accommodate a specific domain’s context.
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2.4.6 Evaluation
But how does one evaluate a model, or the underlying quality of data? Model

evaluation is specific to a general task: classifying images correctly for ImageNet or
answering a question for squad. There is a goal of achieving the highest quantitative
accuracy on a particular task (Wang et al., 2019a); qualitative analysis of what was
answered correctly in contrast to another model is often an after-thought (Linzen,
2020).

Data evaluation is necessary for crowd-sourcing. For annotation, one can
compare the annotations of users to one another using Inter-Annotator Agreement
(iaa). Nowak and Rüger (2010) show that for simple image classification tasks, the
majority vote of unspecialized users is comparable to expert annotation.

However, there is no obvious metric to compute iaa for generation. In ques-
tion answering, one may limit the possible answers to existing pages in Wikipedia,
or some other finite source, to avoid string matching problems. But, language is
complex and multiple users could write equally valid questions that do not appear
similar at the character level. Table 2.2 is one such example.

The interest in neural techniques and a black box mindset precipitated an
ever-increasing race for data; the largest dataset, not the best model architecture
may be the key differentiating factor. But how to evaluate the influence of data
rather than architecture is an open research question.
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Chapter 3: Automation and Crowd-Sourcing for Data

Two cheap methods of creating large neural-scale datasets are automatic gen-
eration of synthetic data and crowd-sourcing generalist users. We discuss a large
dataset created with Text-To-Speech technology, and the limitations thereof be-
ginning with Section 3.1.1 We discuss crowd-sourcing for generating questions in
Section 3.6. 2 These are two methods that are meant to create large-scale datasets,
but at the expense of naturalness or quality. While they are able to create large
datasets—hundreds of thousands of questions in this Chapter—the quality control
process is manual, time-consuming, and subject to error. Both projects require
having an expert, a trivia player and native English speaker, verify the generated
data.

3.1 Automated Data Creation for Question Answering

Progress on question answering (qa) has claimed human-level accuracy. How-
ever, most factoid qa models are trained and evaluated on clean text input, which
becomes noisy when questions are spoken due to Automatic Speech Recognition
(asr) errors. This consideration is disregarded in trivia match-ups between ma-
chines and humans: ibm Watson (Ferrucci, 2010) on Jeopardy! and qb matches
between machines and trivia masters (Boyd-Graber et al., 2018) provide text data
for machines while humans listen. A fair test would subject both humans and ma-
chines to speech input.

Unfortunately, there are no large spoken corpora of factoid questions with
which to train models; text-to-speech software can be used as a method for generat-
ing training data at scale for question answering models (Section 3.7). Although syn-
thetic data is less realistic than true human-spoken questions it easier and cheaper

1Denis Peskov, Joe Barrow, Pedro Rodriguez, Graham Neubig, and Jordan Boyd-Graber. 2019.
Mitigating noisy inputs for question answering. In Conference of the International Speech Com-
munication Association
Peskov is responsible for the data creation, the gathering of users from users, running the neural
models, figure and table design, and majority of paper writing.

2Ahmed Elgohary, Denis Peskov, and Jordan Boyd-Graber. 2019. Can You Unpack That?
Learning to Rewrite Questions-in-Context. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing. 5920–5926
Peskov is responsible for manual quality control in the data collection process, analysis of the data
and model predictions, part of paper writing, and figure+table design.
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Figure 3.1: asr errors on qa data: original spoken words (top of box) are garbled
(bottom). While many words become into “noise”—frequent words or the unknown
token—consistent errors (e.g., “clarendon” to “clarintin”) can help downstream sys-
tems. Additionally, words reduced to <unk> (e.g., “kermit”) can be useful through
forced decoding into the closest incorrect word (e.g., “hermit” or even “car”).

to collect at scale, which is important for training. These synthetic data are still
useful; in Section 3.4.1, models trained on synthetic data are applied to human
spoken data from qb tournaments and Jeopardy!

Noisy asr is particularly challenging for qa systems (Figure 3.1). While
humans and computers might know the title of a “revenge novel centering on Edmund
Dantes by Alexandre Dumas”, transcription errors may mean deciphering “novel
centering on edmond dance by alexander <unk>” instead. Dantes and Dumas are
low-frequency words in the English language and hence likely to be misinterpreted
by a generic asr model; however, they are particularly important for answering
the question. Additionally, the introduction of distracting words (e.g., “dance”)
causes qa models to make errors (Jia and Liang, 2017). Section 3.2.1 characterizes
the signal in this noise: key terms like named entities are often missing, which is
detrimental for qa.

Previous approaches to mitigate asr noise for answering mobile queries (Mishra
and Bangalore, 2010) or building bots (Leuski et al., 2009) typically use unsupervised
methods, such as term-based information retrieval. Our datasets for training and
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evaluation can produce supervised systems that directly answer spoken questions.
Machine translation (Sperber et al., 2017) also uses asr confidences; we evaluate
similar methods on qa.

Specifically, some accuracy loss from noisy inputs can be mitigated through
a combination of forcing unknown words to be decoded as the closest option (Sec-
tion 3.3.2), and incorporating the uncertainties of the asr model directly in neural
models (Section 3.3.3). The forced decoding method reconstructs missing terms by
using terms audibly similar to the transcribed input. Word-level confidence scores
incorporate uncertainty from the asr system into a Deep Averaging Network, intro-
duced earlier in Background Section. Section 3.4 compares these methods against
baseline methods on our synthetic and human speech datasets for Jeopardy! and
qb.

3.2 Spoken question answering datasets

Neural networks require a large training corpus, but recording hundreds of
thousands of questions is not feasible. Crowd-sourcing with the required quality
control (speakers who say “cyclohexane” correctly) is expensive. As an alternative,
we generate a data-set with Google Text-to-Speech on 96,000 factoid questions from
a trivia game called qb (Boyd-Graber et al., 2018), each with 4–6 sentences for a
total of over 500,000 sentences.3 We then decode these utterances using the Kaldi
chain model (Peddinti et al., 2015), trained on the Fischer-English dataset (Cieri
et al., 2004) for consistency with past results on mitigating asr errors in mt (Sper-
ber et al., 2017). This model has a Word Error Rate (wer) of 15.60% on the
eval2000 test set. The wer increases to 51.76% on our qb data, which contains out
of domain vocabulary. The most bleu improvement in machine translation under
noisy conditions could be found in this middle wer range, rather than in values
below 20% or above 80% (Sperber et al., 2017). Retraining the model on the qb
domain would mitigate this noise; however, in practice one is often at the mercy
of a pre-trained recognition model due to changes in vocabularies or speakers. In-
tentional noise has been added to machine translation data (Michel and Neubig,
2018; Belinkov and Bisk, 2018). Alternate methods for collecting large scale audio
data include Generative Adversarial Networks (Donahue et al., 2018) and manual
recording (Lee et al., 2018).

The task of qa requires the system to provide a correct answer out of many
candidates based on the question’s wording. We test on two varieties of different
length and framing. qb questions, which are generally four to six sentences long,
test a user’s depth of knowledge; early clues are challenging and obscure but they
progressively become easy and well-known. Competitors can answer these types of
questions at any point. Computer qa is competitive with the top players (Yamada
et al., 2018). Jeopardy! questions are single sentences and can only be answered
after the question ends. To test this alternate syntax, we use the same method
of data generation on a dataset of over 200,000 Jeopardy questions (Dunn et al.,

3http://cloud.google.com/text-to-speech
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2017b).

3.2.1 Why qa is challenging for asr

asr changes the features of the recognized text in several important ways: the
overall vocabulary is quite different and important words are corrupted. First, it
reduces the overall vocabulary. In our dataset, the vocab drops from 263,271 in the
original data to a mere 33,333. This is expected, as asr only has 42,000 words in
its vocab, so the long tail of the Zipf’s curve is lost. Second, unique words—which
may be central to answering the question—are lost or misinterpreted; over 100,000
of the words in the original data occur only once. Finally, asr systems tend to
delete unintentionally delete words, which makes the sentences shorter. In our qb
data, the average number of words decreases from 21.62 to 18.85 per sentence.

The decoding system is able to express uncertainty by predicting <unk>.
These account for slightly less than 10% of all our word tokens, but is a top-2
prediction for 30% of the 260,000 original words. For qa, words with a high tf-idf
measure are valuable. While some words are lost, others can likely be recovered:
“hellblazer’ becoming “blazer”, “clarendon” becoming “claritin”. We evaluate this by
fitting a tf-idf model on the Wikipedia dataset and then comparing the average tf-
idf per sentence between the original and the asr data. The average tf-idf score,
the most popular metric for evaluating how important a word is for a document,
drops from 3.52 to 2.77 per sentence.

3.3 Mitigating noise

This section discusses two approaches to mitigating the effects of missing
and corrupted information caused by asr systems. The first approach—forced
decoding—exploits systematic errors to arrive at the correct answer. The second
uses confidence information from the asr system to down-weight the influence of
low-confidence terms. Both approaches improve accuracy over a baseline dan model
and show promise for short single-sentence questions. However, a ir approach is
more effective on long questions since noisy words are completely avoided during
the answer selection process.

3.3.1 ir baseline
The ir baseline reframes Jeopardy! and qb qa tasks as document retrieval

ones with an inverted search index. We create one document per distinct answer;
each document has a text field formed by concatenating all questions with that
answer together. At test time questions are treated as queries, and documents
are scored using bm25 (Ramos, 2003; Robertson et al., 2009). We implement this
baseline with Elastic Search and Apache Lucene.
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Table 3.1: As original data are translated through asr, it degrades in quality. One-
best output captures per-word confidence. Full lattices provide additional words
and phone data captures the raw asr sounds. Our confidence model and forced
decoding approach could be used for such data.

Clean For 10 points, name this revenge novel centering on Edmond Dantes, written
by Alexandre Dumas

1-Best for0.935 ten0.935 points0.871 same0.617 this1 . . . revenge novel centering on
<unk> written by alexander <unk> . . .

“Lattice” for0.935 [eps]0.064 pretend0.001 ten0.935 . . . pretend point points point name
same named name names this revenge novel . . .

Phones f_B0.935 er_E0.935 t_B0.935 eh_I1 n_E0.935 . . . p_B oy_I n_I t_I s_E sil
s_B ey_I m_E dh_B ih_I s_E r_B iy_I v_I eh_I n_I jh_E n_B aa_I
v_I ah_I l_I . . .

3.3.2 Forced decoding
We have systematically lost information. We could predict the answer if we

had access to certain words in the original question and further postulate that wrong
guesses are better than knowing that a word is unknown.

We explore commercial solutions—Bing, Google, ibm, Wit—with low tran-
scription errors. However, their apis ensure that an end-user often cannot extract
anything more than one-best transcriptions, along with an aggregate confidence for
the sentence. Additionally, the proprietary systems are moving targets, harming
reproducibility.

We use Kaldi (Povey et al., 2011) for all experiments. Kaldi is a commonly-
used, open-source tool for asr; its maximal transparency enables approaches that
incorporate uncertainty into downstream models. Kaldi provides not only top-1
predictions, but also confidences of words, entire lattices, and phones (Table 3.1).
Confidences are the same length as the text, range from 0.0 to 1.0 in value, and
correspond to the respective word or phone in the sequence.

The typical end-use of an asr system wants to know when when a word is
not recognized. By default, a graph will have a token that represents an unknown;
in Kaldi, this becomes <unk>. At a human-level, one would want to know that an
out of context word happened.

However, when the end-user is a downstream model, a systematically wrong
prediction may be better than a generic statement of uncertainty. So by removing
all reference to <unk> in the model’s Finite State Transducer, we force the system
to decode “Louis Vampas” as “Louisiana” rather than <unk>. The risk we run with
this method is introducing words not present in the original data. For example,
“count” and “mount” are similar in sound but not in context embeddings. Hence,
we need a method to downweight incorrect decoding.
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3.3.3 Confidence augmented dan

We build on Deep Averaging Networks (Iyyer et al., 2015, dan), assuming
that deep bag-of-words models can improve predictions and be robust to corrupted
phrases. The errors introduced by asr can hinder sequence neural models as key
phrases are potentially corrupted and syntactic information is lost.

We modify the original dan model, introduced in Background Section 3.1, to
use word-level confidences from the asr system as a feature. In increasing order
of complexity, the variations are: a Confidence Informed Softmax dan, a Confi-
dence Weighted Average dan, and a Word-Level Confidence dan. We represent the
confidences as a vector c, where each cell ci contains the asr confidence of word
wi.

The simplest model averages the confidence across the whole sentence and
adds it as a feature to the final output classifier. For example in Table 3.1, “for ten
points” averages to 0.914. We introduce an additional weight in the output Wc,
which adjusts our prediction based on the average confidence of each word in the
question.

However, most words have high confidence, and thus the average confidence
of a sentence or question level is high. To focus on which words are uncertain we
weight the word embeddings by their confidence attenuating uncertain words before
calculating the dan average.

Weighting by the confidence directly removes uncertain words, but this is too
blunt an instrument, and could end up erasing useful information contained in low-
confidence words, so we instead learn a function based on the raw confidence from
our asr system. Thus, we recalibrate the confidence through a learned function f :

f(c) = W(c)c + b(c) (3.1)

and then use that scalar in the weighted mean of the dan representation layer:

r** =

∑N
i E[wi] ∗ f(ci)

N
. (3.2)

In this model, we replace the original encoder r with the new version r** to
learn a transformation of the asr confidence that down-weights uncertain words
and up-weights certain words. This final model is referred to as our “Confidence
Model”.

Architectural decisions are determined by hyperparameter sweeps. They in-
clude: having a single hidden layer of 1000 dimensionality for the dan, multiple
drop-out, batch-norm layers, and a scheduled adam optimizer. Our dan models
train until convergence, as determined by early-stopping. Code is implemented in
PyTorch (Paszke et al., 2017), with TorchText for batching.4

4Code, data, and additional analysis available at https://github.com/DenisPeskov/QBASR
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3.4 Results

Achieving 100% accuracy on this dataset is not a realistic goal, as not all test
questions are answerable (specifically, some answers do not occur in the training
data and hence cannot be learned by a machine learning system). Baselines for the
dan (Table 3.2) establish realistic goals: a dan trained and evaluated on the same
train and dev set, only in the original non-asr form, correctly predicts 54% of the
answers. Noise drops this to 44% with the best ir model and down to ≈ 30% with
neural approaches.

Since the noisy data quality makes full recovery unlikely, we view any im-
provement over the neural model baselines as recovering valuable information. At
the question-level, strong ir outperforms the dan by around 10%.

Since ir can avoid all the noise while benefiting from additional independent
data points, it scales as the length of data increases. There is additional motivation
to investigate this task at the sentence-level. Computers can beat humans at the
game by knowing certain questions immediately; the first sentence of the qb question
serves as a proxy for this threshold. Our proposed combination of forced decoding
with a neural model led to the highest test accuracy results and outperforms the ir
one at the sentence level.

A strong tf-idf ir model can top the best neural model at the multi-sentence
question level in qb; multiple sentences are important because they progressively
become easier to answer in competitions. However, our models improve accuracy
on the shorter first-sentence level of the question. This behavior is expected since
ir methods are explicitly designed to disregard noise and can pinpoint the handful
of unique words in a long paragraph; conversely they are less accurate when they
extract words from a single sentence.

3.4.1 Qualitative Analysis & Human Data
The synthetic dataset facilitates large-scale machine learning, but ultimately

we care about performance on human data. For qb we record questions read by
domain experts at a competition. To account for variation in speech, we record five
questions across ten different speakers, varying in gender and age; this set of fifty
questions is used as the human test data. Table 3.3 provides examples of variations.
For Jeopardy! we manually parsed a complete episode by question.

The predictions of the regular dan and the confidence version can differ. For
input about The House on Mango Street, which contains words like “novel”, “char-
acter”, and “childhood” alongside a corrupted name of the author, the regular dan
predicts The Prime of Miss Jean Brodie, while our version predicts the correct an-
swer.

3.4.2 Discussion & Future Work
Confidences are a readily human-interpretable concept that may help build

trust in the output of a system. Transparency in the quality of up-stream content
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qb Jeopardy!

Synth Human Synth Human

Model Start End Start End

Methods Tested on Clean Data
ir 0.064 0.544 0.400 1.000 0.190 0.050
dan 0.080 0.540 0.200 1.000 0.236 0.033

Methods Tested on Corrupted Data
ir base 0.021 0.442 0.180 0.560 0.079 0.050
dan 0.035 0.335 0.120 0.440 0.097 0.017
fd 0.032 0.354 0.120 0.440 0.102 0.033
Confidence 0.036 0.374 0.120 0.460 0.095 0.033
fd+Conf 0.041 0.371 0.160 0.440 0.109 0.033

Table 3.2: Both forced decoding (fd) and the best confidence model improve accu-
racy. Jeopardy only has an At-End-of-Sentence metric, as questions are one sentence
in length. Combining the two methods leads to a further joint improvement in cer-
tain cases. ir and dan models trained and evaluated on clean data are provided as
a reference point for the asr data.

SpeakerText

Base John Deydras, an insane man who claimed to be Edward II, stirred up
trouble when he seized this city’s Beaumont Palace.

S1 unk an insane man who claimed to be the second unk trouble when he
sees unk beaumont → Richard_I_of_England

S2 john dangerous insane man who claims to be the second stirring up
trouble when he sees the city’s beaumont → London

S3 unk dangerous insane man who claim to be unk second third of trouble
when he sees the city’s unk palace → Baghdad

Table 3.3: Variation in different speakers causes different transcriptions of a question
on Oxford. The omission or corruption of certain named entities leads to different
predictions, which are indicated with an arrow.

can lead to downstream improvements in a plethora of nlp tasks.
Exploring sequence models or alternate data representations may lead to fur-

ther improvement. Including full lattices may mirror past results for machine trans-
lation (Sperber et al., 2017) for the task of question answering. Phone-level ap-
proaches work in Chinese (Lee et al., 2018), but our phone models had lower ac-
curacies than the baseline, perhaps due to a lack of contextual representation. Us-
ing unsupervised approaches for asr (Wessel and Ney, 2004; Lee et al., 2009) and
training asr models for decoding qb or Jeopardy! words are avenues for further
exploration.
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3.5 Can Question Answering Audio be Automated?

Question answering, like many nlp tasks are impaired by noisy inputs. Intro-
ducing asr into a qa pipeline corrupts the data. A neural model that uses the asr
system’s confidence outputs and systematic forced decoding of words rather than
unknowns improves qa accuracy on qb and Jeopardy! questions. Our methods are
task agnostic and can be applied to other supervised nlp tasks. Larger human-
recorded question datasets and alternate model approaches would ensure spoken
questions are answered accurately, allowing human and computer trivia players to
compete on an equal playing field. Text-to-Speech technology can create a large
dataset, but the unvarying pronunciation, speed, and voice—every single tts voice
is female—ultimately inhibits this approach from being a gold-standard.

3.6 Crowd-Sourcing for Question Generation

Some tasks cannot be automatically generated from templates and require
human discretion. One cost-efficient, scalable pool for human input are crowd-
sourcing platforms, specifically Mechanical Turk (Buhrmester et al., 2011). We
summarize a data collection project that used unspecialized workers to rewrite trivia
questions.

Question Answering (qa) is an ai complete problem (Webber, 1992), but
existing qa datasets do not rise to the challenge: they lack key nlp problems like
anaphora resolution, coreference disambiguation, and ellipsis resolution. The logic
needed to answer these types of questions requires deeper nlp understanding that
simulates the context in which humans naturally answer questions.

Background Section 2.2.2 distinguishes between machine reading comprehen-
sion (mrc) and the nascent area of conversational question answering (cqa). How-
ever, we observe that cqa questions can be rewritten as stand-alone mrc questions
and provide additional training data. We reduce challenging, interconnected cqa ex-
amples to independent, stand-alone mrc to create canard—Context Abstraction:
Necessary Additional Rewritten Discourse—a new dataset5 that rewrites quac (Choi
et al., 2018) questions. We crowd-source context-independent paraphrases of quac
questions and use the paraphrases to train and evaluate question-in-context rewrit-
ing. In the process, we observe the behavior of crowd users and the quality of their
output.

Section 3.7 constructs canard, a new dataset of question-in-context with
corresponding context-independent paraphrases. Section 6.5 analyzes our rewrites
(and the underlying methodology) to understand the linguistic phenomena that
make cqa and using crowd-sourcing for generation difficult.

5http://canard.qanta.org
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What happened to Anna 
Vissi in 1983?What happened in 1983?

A1: In May 1983, she marries Nikos Karvelas, a composer

Did they have any 
children?

A2: In November, she gave birth to her daughter Sofia

Did she have any other 
children? 

Question Rewriting

Did Anna Vissi have any 
other children than her 

daughter Sofia?  

Did  Anna Vissi and 
Nikos Karvelas have any 

children together? 

A3: I don’t know

Q1:

Q2:

Q3:

Figure 3.2: Question-in-context rewriting task. The input to each step is a question
to rewrite given the dialog history which consists of the dialog utterances (ques-
tions and answers) produced before the given question is asked. The output is an
equivalent, context-independent paraphrase of the input question.

3.7 Dataset Construction

We elicit paraphrases from human crowdworkers to make previously context-
dependent questions unambiguously answerable. Through this process, we resolve
difficult coreference linkages and create a pair-wise mapping between ambiguous and
context-enriched questions. We derive canard from quac (Choi et al., 2018), a
sequential question answering dataset about specific Wikipedia sections. quac uses
a pair of workers—a “student” and a “teacher”—to ask and respond to questions. The
“student” asks questions about a topic based on only the title of the Wikpedia article
and the title of the target section. The “teacher” has access to the full Wikipedia
section and provides answers by selecting text that answers the question. With
this methodology, quac gathers 98k questions across 13,594 conversations. We take
their entire dev set and a sample of their train set and create a custom JavaScript
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Characteristic Ratio
Answer Not Referenced 0.98
Question Meaning Unchanged 0.95
Correct Coreferences 1.0
Grammatical English 1.0
Understandable w/o Context 0.90

Table 3.4: Manual inspection of 50 rewritten context-independent questions from
canard suggests that the new questions have enough context to be independently
understandable.

task in Mechanical Turk that allows workers to rewrite these questions. JavaScript
hints help train the users and provides automated, real-time feedback.

We provide workers with a comprehensive set of instructions and task ex-
amples. We ask them to rewrite the questions in natural sounding English while
preserving the sentence structure of the original question. We discourage work-
ers from introducing new words that are unmentioned in the previous utterances
and ask them to copy phrases when appropriate from the original question. These
instructions ensure that the rewrites only resolve conversation-dependent ambigui-
ties. Thus, we encourage workers to create minimal edits; in Section 6.4, we take
advantage of this to use bleu for evaluating model-generated rewrites.

We display the questions in the conversation one at a time, since the rewrites
should include only the previous utterance. After a rewrite to the question is sub-
mitted, the answer to the question is displayed. The next question is then displayed.
This repeats until the end of the conversation. The full set of instructions and the
data collection interface are provided in the appendix.

We apply quality control throughout our collection process. During the task,
JavaScript checks automatically monitor and warn about common errors: submis-
sions that are abnormally short (e.g., ‘why’), rewrites that still have pronouns (e.g.,
‘he wrote this album’), or ambiguous words (e.g., ‘this article’, ‘that’). Many quac
questions ask about ‘what/who else’ or ask for ‘other’ or ‘another’ entity. For that
class of questions, we ask workers to use a phrase such as ‘other than’, ‘in addi-
tion to’, ‘aside from’, ‘besides’, ‘together with’ or ‘along with’ with the appropriate
context in their rewrite.

We gather and review our data in batches to screen potentially compromised
data or low quality workers. A post-processing script flags suspicious rewrites and
workers who take and abnormally long or short time. We flag about 15% of our data.
Every flagged question is manually reviewed by one of the authors and an entire hit
is discarded if one is deemed inadequate. We reject 19.9% of submissions and the
rest comprise canard. Additionally, we filter out under-performing workers based
on these rejections from subsequent batches. To minimize risk, we limit the initial
pool of workers to those that have completed 500 hits with over 90% accuracy and
offer competitive payment of $0.50 per hit.

We verify the efficacy of our quality control through manual review. A ran-
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ORIGINAL: Was this an honest mistake by the media?
REWRITE: Was the claim of media regarding Leblanc’s room come to true?
ORIGINAL: What was a single from their album?
REWRITE: What was a single from horslips’ album?
ORIGINAL: Did they marry?
REWRITE: Did Hannah Arendt and Heidegger marry?

Table 3.5: Not all rewrites correctly encode the context required to answer a ques-
tion. We take two failures to provide examples of the two common issues: Changed
Meaning (top) and Needs Context (middle). We provide an example with no issues
(bottom) for comparison.

dom sample of fifty questions sampled from the final dataset is reviewed for desirable
characteristics by a native English speaker in Table 3.4. Each of the positive traits
occurs in 90% or more of the questions. Based on our sample, our edits retain
grammaticality, leave the question meaning unchanged, and use pronouns unam-
biguously. There are rare occasions where workers use a part of the answer to the
question being rewritten or where some of the context is left ambiguous. These
infrequent mistakes should not affect our models. We provide examples of failures
in Table 3.5.

We use the rewrites of quac’s development set as our test set (5,571 question-
in-context and corresponding rewrite pairs) and use a 10% sample of quac’s training
set rewrites as our development set (3,418); the rest are training data (31,538).

3.8 Dataset and Model Analysis

We analyze our dataset with automatic metrics after validating the reliability
of our data (Section 3.7). We compare our dataset to the original quac questions
and to automatically generated questions by our models. Then, we manually inspect
the sources of rewriting errors in the seq2seq baseline.

3.8.1 Anaphora Resolution and Coreference
Our rewrites are longer, contain more nouns and less pronouns, and have more

word types than the original data. Machine output lies in between the two human-
generated corpora, but quality is difficult to assess. Figure 3.3 shows these statistics.
We motivate our rewrites by exploring linguistic properties of our data. Anaphora
resolution and coreference are two core nlp tasks applicable to this dataset.

Pronouns occur in 53.9% of quac questions. Questions with pronouns are
more likely to be ambiguous than those without any. Only 0.9% of these have pro-
nouns that span more than one category (e.g., ‘she’ and ‘his’). Hence, pronouns
within a single sentence are likely unambiguous. However, 75.0% of the aggregate
history has pronouns and the percentage of mixed category pronouns increase to
27.8% of our data. Therefore, pronoun disambiguation potentially becomes a prob-
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Figure 3.3: Human rewrites are longer, have fewer pronouns, and have more proper
nouns than the original quac questions. Rewrites are longer and contain more
proper nouns than our Pronoun Sub baseline and trained Seq2Seq model.

lem for a quarter of the original data. An example is provided in Table 3.6.
Approximately one-third of the questions generated by our pronoun-replacement

baseline are within 85% string similarity to our rewritten questions. That leaves
two-thirds of our data that cannot be solved with pronoun resolution alone.

3.9 Conclusion

In this chapter, we cover two types of low-cost dataset construction techniques:
automation and generalist crowd-sourcing. The advantages of this method are cost
and scalability, which is demanded by the current paradigm of neural models. This
however comes at the expense of quality. A limitation of our past work in automation
is generalization: text-to-speech only has female voices and is consistently decoded,
while the voices of real humans are decoded with large variations. Unseen data
points are likely to confound a model trained on unnatural data. Additionally,
automated data creation still depends on having quality source data, that often has
to come from expert users. In this project, we are able to record found questions
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Label Text
QUESTION How long did he stay there?
REWRITE How long did Cito Gaston stay at the Jays?

HISTORY

Cito Gaston
Q: What did Gaston do after the world series? . . .
Q: Where did he go in 2001?
A: In 2002, he was hired by the Jays as special assistant to
president and chief executive officer Paul Godfrey.

Table 3.6: An example that had over ten flagged proper nouns in the history. Rewrit-
ing requires resolving challenging coreferences.

that were already written by Quizbowl experts. Writing hundreds of thousands of
our questions would not have been tractable. This suggests that expert design is
necessary for automation, as discussed in Chapter 5.

A limitation of generalist crowd-sourcing is the inability to automatically qual-
ity control generated data. Our work requires manual analysis of each sentence
submitted by the crowd; this is time-intensive and subject to error. Additionally, it
requires real-time task monitoring and user exclusion as otherwise malicious users
can quickly contribute a large part of your crowd-sourced task. There is no full-proof
way to ensure quality in tasks involving crowd-sourcing generation. However, this
method seems to generate more diverse and lengthy sentences than a comparable
automation technique. One way to handle the quality control issue is by using an
expert for quality assessment, which we discuss in Chapter ??.
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Chapter 4: Mixed Types of Users

As an intermediate step between crowd-driven and expert-driven, we propose
an intermediate solution that pairs a person from the crowd with an expert. This
reflects the attitude of a customer, simulated by a worker from the crowd, interacting
with a customer service agent, simulated by an actual professional customer service
agent. The resulting dataset provides an stark contrast in the language generated
by anonymous crowd workers and experts.1

4.1 Introduction

Modern Natural Language Understanding (NLU) frameworks for dialogues are
by definition data hungry. They require large amounts of training data representa-
tive of goal oriented conversations reflecting both context and diversity. But human
responses in goal-oriented dialogues are less predictable than automated systems
(Bordes et al., 2016). For example, “Please do this” cannot be interpreted without
a broader context. Only by seeing previous utterances, such as requests to book a
flight on a specific day to a specific destination, can this task be performed. Ad-
ditionally, a single intent can be phrased in multiple ways depending on context;
“book my flight”, “finalize my reservation”, “Yes, the 6 pm one” may all be referring
to a flight-booking intent. Hence, entire conversations, rather than independent ut-
terances, must be collected. Such data is even more pertinent to modeling nlu and
related tasks as they require large, varied, and ideally human-generated datasets.
Moreover, recent work (Dong et al., 2015; Devlin et al., 2019) has shown the ben-
efit of applying joint-training and transfer learning techniques to natural language
processing tasks. However, these approaches have yet to become widely used in
dialogue tasks, due to a lack of large-scale datasets. Furthermore, the latest state
of the art end-to-end neural approaches benefit from such training data even more
so than past work on goal-oriented dialogues structured around slot filling (Lemon
et al., 2006; ?). One way to simulate data—and not risk releasing personally iden-
tifying information—for a domain is to use a Wizard-of-Oz data gathering tech-

1Denis Peskov, Nancy Clarke, Jason Krone, Brigi Fodor, Yi Zhang,Adel Youssef, and Mona
Diab. Multi-domain goal-oriented dialogues(multidogo): Strategies toward curating and annotat-
ing large scale dialogue data. In Proceedings of the 2019 Conference on Empir-ical Methods in
Natural Language Processing and the 9th Interna-tional Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4518–4528, 2019.
Peskov planned and implemented majority of crowd-sourcing tasks, supervised the data collection
thereof, wrote part of the task guidelines, performed data analysis, and wrote the majority of
paper.
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Role Turn Annotations
A Hey there! Good morning. You’re connected

to LMT Airways. How may I help you?
DA = { elicitgoal }

C Hi, I wonder if you can confirm my seat assign-
ment on my flight tomorrow?

IC = { SeatAssignment }

A Sure! I’d be glad to help you with that. May I
know your last name please?

DA = { elicitslot }

C My last name is Turker. IC = { contentonly },
SL = {Name : Turker }

A Alright Turker! Could you please share the
booking confirmation number?

DA = { elicitslot }

C I believe it’s AMZ685. IC = { contentonly },
SL = { Confirmation Number
: AMZ685 }

· · · · · · · · ·

Table 4.1: A segment of a dialogue from the airline domain annotated at the turn
level. This data is annotated with agent dialogue acts (DA), customer intent classes
(IC), and slot labels (SL). Roles C and A stand for “Customer” and “Agent”, respec-
tively.

nique, which requires that participants in a conversation fulfill a role (Kelley, 1984).
This approach has been used in popular public goal-oriented datasets: dstc and
MultiWOZ (Williams et al., 2016; Budzianowski et al., 2018).

Conversations between people and automated systems occur with increasing
frequency, especially in customer service. Customers reach out to agents, which
could be automated bots or real individuals, to achieve a domain-specific goal. This
creates a disparate conversation: agents are incentivized to operate within a set
procedure and convey a patient and professional tone. In contrast, customers do
not have this incentive. However, to date, the largest available multi-domain goal-
oriented dialogue dataset assigns similar dialogue act annotations to both agents
and customers (Budzianowski et al., 2018).

To solve the aforementioned challenges, we present our efforts to curate, an-
notate, and evaluate a large scale multi-domain set of goal oriented dialogues. The
dataset is primarily gathered from workers in the crowd paired with professional
annotators. The dataset elicited, MultiDoGO, comprises over 86K raw conversations
of which 54,818 conversations are annotated at the turn level. We investigate mul-
tiple levels of annotation granularity. We annotate a subset of the data on both
turn and sentence levels. A turn is defined as a sequence of one or more speech/text
sentences by a participant in a conversation. A sentence is a period delimited se-
quence of words in a turn. A turn may comprise one or more sentences. We do
use the term utterance to refer to a unit (turn or sentence, spoken or written by a
participant).2 In our devised annotation strategy, we distinguish between dialogue
speech acts for agents vs. customers. In MultiDoGO, the agents’ speech acts [da]

2We acknowledge that the term utterance is controversial in the literature (?)
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are annotated with generic class labels common across all domains, while customer
speech acts are labeled with intent classes [ic]. Moreover, we annotate customer
utterances with the appropriate slot labels [sl], which consist of the sl span and
corresponding tokens with that sl tag. We present the strategies we use to curate
and annotate such data given its contextual setting. We furthermore illustrate the
efficacy of our devised approaches and annotation decisions against intrinsic metrics
and via extrinsic evaluation, namely by applying neural baselines for da, ic and sl
classification leveraging joint models.

4.2 Existing Dialogue Datasets

There are multiple existing goal-oriented dialogue collections generated by hu-
mans through Wizard-of-Oz techniques. The Dialog State Tracking Challenge, aka
Dialog Systems Technology Challenge, (dstc) spans 8 iterations and entails the do-
mains of bus timetables, restaurant reservations, and hotel bookings, travel, alarms,
movies, etc. (Williams et al., 2016). Frames (Asri et al., 2017) has 1369 dialogues
about vacation packages. MultiWOZ contains 10,438 dialogues about Cambridge ho-
tels and restaurants (Budzianowski et al., 2018). There are several dialogue datasets
that specialize in a single domain. ATIS (Hemphill et al., 1990) comprises speech
data about airlines structured around formal airline flight tables. Similarly, the
Google Airlines dataset purportedly contains 400,000 templated dialogues about
airline reservations (Wei et al., 2018).3 The Ubuntu Dialogue Corpus has over a
million dialogues about Ubuntu technical support (Lowe et al., 2015).

On the other hand, Chit-chat style dialogues without goals have been popular
since ELIZA and have been investigated with neural techniques (???). However,
these datasets cannot be used for modeling goal-oriented tasks. Related dialogue
dataset collections used for Sequential Question Answering rely on dialogue to an-
swer questions, but the task is notably different from our use case of modeling
goal oriented conversational AI, hence leading to different evaluation considerations
(?Choi et al., 2018).

4.3 MultiDoGO Dataset Curation

4.3.1 Data Collection Procedure
We employ both internal data associates, who we train, and crowd-sourced

workers from Mechanical Turk (MTurkers) to generate conversational data using a
Wizard-of-Oz approach. In each conversation, the data associates assumes the role
of an agent while the MTurkers act as customers. In an effort to source competent
MTurkers, we re-quire that each MTurker have a Human Intelligence Task (HIT)
accuracy minimum of 90%, a location in the United States, and have completed
a significant number of HITs in the past. To facilitate goal-oriented conversations
between the customer and agent, we give each agent a prompt listing the supported

3The Google Airlines dataset has not been released to date.
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Figure 4.1: Crowd sourced annotators select an intent and choose a slot in our
custom-built Mechanical Turk interface. Entire conversations are provided for refer-
ence. Detailed instructions are provided to users, but are not included in this figure.
Options are unique per domain.

request types (dialog acts)and pieces of information (slots) needed to complete each
request. We also specify criteria such as minimal conversation length, number of
goals,number of complex requests, etc, to increase conversation diversity. See Fig-
ure 2 for an example prompt. In addition, we explicitly request that neither agents
nor customers use any personally identifiable information. At an implementation
level,we create a custom, web interface for the MTurkers and data associates that
displays our instructions next to the current dialogue. This allows each participant
to quickly refer to our guidelines with-out stopping the conversation. Despite fol-
lowing a familiar wizard-of-oz elicitation procedure, and curating data for multiple
domains in a fashion similar to previous data collection efforts such as MultiWOZ,
MultiDoGO comprises more varied domains, it is collected at an unprecedented scale,
and it is curated with control over generating explicit biases in the conversations to
allow for diverse conversation representation. To our knowledge this is a novel col-
lection strategy as we explicitly guide/prod the participants in a dialogue to engage
in conversations with specific biases such as intent change, slot change, multi-intent,
multiple slot values, slot overfilling and slot deletion. For example, in the Fast Food
domain, participants were instructed to pretend that they were ordering fast food
from a drive-thru. After making their initial order, they were instructed to change
their mind about what they were ordering:“I’d like a burger. No wait, can you make
that a chicken sandwich?”. In the Financial domain, we asked participants to make
sure that they requested multiple intents such as “I’d like to find my routing number
and check my balance.”4 To that end, our collection procedure deliberately attempts
to guide the dialogue flow to ensure diversity in dialogue policies.

4.4 Data Annotation

We discuss the annotation needed for our dataset. Of particular interest, a
direct comparison of using experts versus the crowd is made in in Section 7.2.

4For a full list of conversational biases with examples, please see the appendix.
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4.4.1 Annotated Dialogue Tasks
Our dataset has three types of annotation: Agent dialogue acts [da], customer

intent classes [ic], and slot labels [sl]. We intentionally decouple Agent and cus-
tomer speech act tags into the categories da and ic, respectively, to produce more
fine-grained speech act tags than past iterations of dialog datasets. Intuitively, agent
das are consistent across domains and more abstract in nature, since agents have a
standard form of response. On the other hand, customer ics are domain-specific and
can entail reserving a hotel room or ordering a burger, depending on the domain.
A conversation example with annotations is provided in Table 4.1.

Agent Dialogue Acts (da) Agent dialogue acts are the most straightforward
of our annotation tasks. There are eight possible das in all domains: ElicitGoal,
ElicitSlot, ConfirmGoal, ConfirmSlot, EndGoal, Pleasantries, Other. The names
are self-explanatory. Elicit Goal/Slot indicates that the agent is gathering informa-
tion. Confirm Goal/Slot indicates that the agent is confirming previously provided
information. The EndGoal and Pleasantries tags, identify non-task related actions.
Other indicates that the selected utterance was not one of the other possible tags.
Agent dialogue acts are consistent across domains and are often abstract (e.g. Elic-
itIntent, ConfirmSlot).

Customer Intent Classes (ic): Unlike Agent da, customer ic vary for
each domain and are more concrete. For example, the Airline domain has a “Book-
Flight” ic, Fast Food has an “OrderMeal” ic, and Insurance has an “OrderPolicy”
ic in our annotation schema. Customer intents can overlap across domains (e.g.
OpeningGreeting, ClosingGreeting) and other times be domain specific (e.g. Re-
questCreditLimitIncrease, OrderBurger, BookFlight).

Slot Labels (sl): Slot Labeling is a task contingent on Customer Intent
Classes. Certain intents require that additional information, namely slot values, be
captured. For instance, to open a bank account, one must solicit the customer’s
social security number. Slots can overlap across intents (e.g. Name, SSN Number)
or they can be unique to a domain-specific intent (e.g. CarPolicy).

4.4.2 Data Annotation Procedure
Our annotators use a web interface, depicted in Figure 4.1, to select the appro-

priate intent class for an utterance out of a list of provided options. To annotate slot
labels, our annotators use their cursors to highlight slot value character spans within
an utterance and then select the corresponding slot label from a list of options. The
output of this slot labeling process is a list of 〈slot-label, slot-value, span〉 triplets
for each utterance.

4.4.3 Annotation Design Decisions
Decoupled Agents and Customers Label Sets Agents and customers have

notably different goals and styles of communication. However, past dialogue datasets
do not make this distinction at speech act schema level. Specificity is important for
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isaa
DA IC SL
0.701 0.728 0.695

Table 4.2: Dialogue act (da), Intent class (ic), and slot labeling (sl) Inter Source
Annotation Agreement (isaa) scores quantifying the agreement of crowd sourced
and professional annotations.

handling unique customer requests, but a relatively formulaic approach is required of
agents across different industries. Our distinction between the customer and agent
roles creates training data for a bot that explicitly simulates agents.

Annotation Unit Granularity: Sentence vs. Turn Level An impor-
tant decision, which is often under discussed, is the proper semantic unit of text to
annotate in a dialogue. Commonly, datasets provide annotations at the turn level
(Budzianowski et al., 2018; Asri et al., 2017; ?). However, turn level annotations can
introduce confusion for ic datasets, given multiple intents may be present in differ-
ent sentences of a single turn. For instance, consider the turn “I would like to book
a flight to San Francisco. Also, I want to cancel a flight to Austin." Here, the first
sentence has the BookFlight intent and the second sentence has the CancelFlight
intent. An turn level annotation of this utterance would yield the multi-class intent
(BookFlight, CancelFlight). In contrast, a sentence level annotation of this utter-
ance identifies that the first sentence corresponds to BookFlight while the second
corresponds to CancelFlight. We annotate a subset our data, 2,500 conversation
per domain for 15,000 conversations in total, at the sentence as well as turn level to
access the impact of this design choice on downstream performance. The remainder
of our dataset is annotated only at the turn level.

Professional vs. Crowd-Sourced Workers for Annotation For annota-
tion, we compare and contrast professional annotators to crowd sourced annotators
on a subset of data. Professional annotators assign da, ic, and sl tags to the
15,000 conversations annotated at both the turn and sentence level; statistics for
these conversations are given in Table 4.7. In an effort to decrease annotation cost,
we employ crowd source annotators via Mechanical Turk to label an additional
54,818 conversations rated as Good or Excellent quality during data collection. We
provide statistics for this set of crowd annotated data in Table 4.3. To compare
the quality of crowd sourced annotations against professional annotations, we use
both strategies to annotate a shared subset of 8,450 conversations. We devise an In-
ter Source Annotation Agreement (isaa) metric to quantify the agreement of these
crowd sourced and professionally sourced annotations. isaa is a relaxation of Cohen
κ, intended to count partial agreement of multi-tag labels. isaa defines two sets of
tags, A and B, to be in agreement if there is at least one “shared" tag in both A
and B. A and B reflect the majority labels agreed upon per source (professionals
or crowd workers). Using isaa we find that crowd sourced and professional annota-
tions have a substantial degree of shared annotations. We report isaa for the da,
ic, and sl tasks in Table 4.2.
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Domain Elicited Good/Excellent IC/SL DA/IC/SL
Airline 15100 14205 7598 6287
Fast Food 9639 8674 7712 4507
Finance 8814 8160 8002 6704
Insurance 14262 13400 7799 7434
Media 33321 32231 19877 12891
Software 5562 4924 3830 2753
Total 86698 81594 54818 40576

Table 4.3: Total number of conversations per domain: raw conversations Elicited;
Good/Excellent is the total number of conversations rated as such by the agent
annotators; (IC/SL) is the number of conversations annotated for Intent Classes
and Slot Labels only; (DA/IC/SL) is the total number of conversations annotated
for Dialogue Acts, Intent Classes, and Slot Labels.

Bias Airlines Fast Food Finance Insurance Media Software
IntentChange 1443
MultiIntent 2200 1913 1799 1061 607 2295
MultiValue 354
Overfill 1486 2763
SlotChange 4207 2011 2506 3321 570 2085
SlotDeletion 333
Total 6407 6054 5791 7145 1177 4380

Table 4.4: Number of conversations per domain collected with specific biases. Fast
Food had the maximum number of biases. MultiIntent and SlotChange are the most
used biases.

4.4.4 Quality Control
We institute three processes to enforce data quality. During data collection,

our data associates report on the quality of each conversation. Specifically, the data
associates grade the conversation on a scale from “Unusable”, “Poor", “Good", to
“Excellent". They were provided with guidelines to help decide on the chosen rating
such as coherence, whether the dialogue achieved the purported goal, etc. To ensure
high data quality we only utilize conversations with “Good" or “Excellent" ratings
in subsequent annotation.

Secondly, each conversation is annotated at least twice. We resolve inconsistent
annotations by selecting the annotation given by the majority of annotators per
item. We calculate inter-annotator agreement with Fleiss κ and find “substantial
agreement”, according to the metric. Our annotators must pass a qualification test as
well as maintain an on-going level of accuracy in randomly distributed test questions
throughout their annotation. Third, we pre-process our data to remove issues such
as duplicate conversations and improperly entered slot value spans. We refer readers
to our discussion of pre-processing in Section 4.5 for further detail.
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Metric dstc 2 woz2.0 M2M MultiWOZ MultiDoGO
Number of Dialogues 1,612 600 1,500 8,438 40,576
Total Number of Turns 23,354 4,472 14,796 115,424 813,834
Total Number of Tokens 199,431 50,264 121,977 1,520,970 9,901,235
Avg. Turns per Dialog 14.49 7.45 9.86 15.91 20.06
Avg. Tokens Per Turn 8.54 11.24 8.24 13.18 12.16
Total Unique Tokens 986 2,142 1,008 24,071 70,003
Number of Unique Slots 8 4 14 25 73
Number of Slot Values 212 99 138 4,510 55,816
Number of Domains 1 1 1 7 6
Number of Tasks 1 1 2 2 3

Table 4.5: MultiDoGO is several times larger in nearly every dimension to the per-
tinent datasets as selected by Budzianowski et al. (2018). We provide counts for
the training data, except for frames, which does not have splits. Our number of
unique tokens and slots can be attributed to us not relying on carrier phrases.

4.4.5 Dataset Characterization and Statistics
MultiDoGO dataset is more diverse by virtue of covering more domains, but

more importantly, it is more controlled since it was curated rather than being scraped
from existing data sources that are not necessarily synchronous (Ubuntu). Table 4.3
shows the statistics for MultiDoGO raw conversations harvested, rated as Excellent or
Good, and annotated for da, ic and sl. Table 4.4 shows the number of conversations
per domain reflecting the specific biases used.

MultiDoGO is several orders of magnitude larger than comparable datasets
as reflected in nearly every dimension: the number of conversations, the length of
the conversation, the number of domains, and the diversity of the utterances used.
Table 4.5 illustrates a comparative statistics to existing data sets.

Domain #Conv #Turn #Turn/Conv #Sentence #Intent #Slot
Airline 2,500 39,616 15.8 (15) 66,368 11 15
Fast Food 2,500 46,246 18.5 (18) 73,305 14 10
Finance 2,500 46,001 18.4 (18) 70,828 18 15
Insurance 2,500 41,220 16.5 (16) 67,657 10 9
Media 2,500 35,291 14.1 (14) 65,029 16 16
Software 2,500 40,093 16.0 (15) 70,268 16 15

Table 4.6: Data statistics by domain. Conversation length is shown in average
(median) number of turns per conversation. Inter-annotator agreement (iaa) is
measured with Fleiss’ κ for the three annotation tasks: Agent da (da), Customer
ic (ic), and Slot Labeling (sl).

We provide summary statistics for the subset of our data annotated at both
turn and sentence granularity in Table 4.7. This describes the total size of the
data per domain in number of conversations, turns, the unique number of intents
and slots, and inter-annotator agreement (IAA) for both turn and sentence level
annotations. It is worth observing that the da annotations achieve a much higher
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Domain Turn-level IAA Sentence-level IAA
Airline 0.514/0.808/0.802 0.670/0.788/0.771
Fast Food 0.314/0.700/0.624 0.598/0.725/0.607
Finance 0.521/0.827/0.772 0.700/0.735/0.714
Insurance 0.521/0.862/0.848 0.703/0.821/0.826
Media 0.499/0.812/0.725 0.678/0.802/0.758
Software 0.508/0.748/0.745 0.709/0.764/0.698

Table 4.7: Inter-annotator agreement (IAA) is measured with Fleiss’ κ for the three
annotation tasks: Agent DA (DA), Customer IC (IC), and Slot Labeling (SL).

Agent Instructions

Imagine you work at a bank. Customers may contact you about the following set
of issues: checking account balances (checking or savings), transferring money
between accounts, and closing accounts.

GOAL: Answer the customer’s question(s) and complete their request(s).

For any request, you will need to collect at least the following information to be
able to identify the customer: name, account PIN *or* last 4 digits of SSN.

For giving information on balances, or for closing accounts, you will also need
the last 4 digits of the account number.

For transferring money, you will also need: last 4 digits of account to move
from, last 4 digits of account to move to, and the sum of money to be transferred.

Your customer may ask you to do only one thing; that’s okay, but make sure
you confirm you achieved everything the Customer wanted before completing
the conversation. Don’t forget to signal the end of the conversation (see General
guidelines)

Figure 4.2: Agents are provided with explicit fulfillment instructions. These are
quick-reference instructions for the Finance domain. Agents serve as one level of
quality control by evaluating a conversation between Excellent and Unusable.

IAA in Sentence level annotations compared to Turn level annotation, most notably
in the Fast Food domain. ic and sl annotations reflect a slightly higher IAA in
Turn level annotation granularity compared to Sentence level.

4.5 Dialogue Classification Baselines

To establish baseline performance for the MultiDoGO dataset we pre-process,
create dataset splits, and evaluate the performance of three baseline models for each
domain.

Pre-processing: We pre-process the corpus of dialogues for each domain to
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Airline Fast Food Finance
Model Annot DA IC SL DA IC SL DA IC SL
MFC S 60.57 33.69 38.71 57.14 25.42 61.92 51.73 37.37 34.07
lstm S 97.20 90.84 74.16 90.40 86.09 72.93 93.90 90.06 69.09
elmo S 97.32 91.88 86.55 91.03 87.95 77.51 94.07 91.15 77.36
MFC T 33.04 32.79 37.73 33.07 25.33 61.84 36.52 38.16 34.31
lstm T 84.25 89.15 75.78 66.41 87.35 73.57 76.19 92.30 70.92
elmo T 84.04 89.99 85.64 65.69 88.96 79.63 76.29 94.50 79.47

Insurance Media Software
Model Annot DA IC SL DA IC SL DA IC SL
MFC S 56.87 38.37 53.75 57.02 30.42 82.06 58.14 33.32 53.96
lstm S 94.73 93.30 75.27 94.27 92.35 90.84 93.22 90.95 69.48
elmo S 94.63 94.27 88.45 94.27 93.32 93.99 93.66 92.25 76.04
MFC T 36.39 39.42 54.66 29.90 31.82 78.83 36.79 33.78 54.84
lstm T 75.37 94.75 76.84 77.94 94.35 87.33 83.32 89.78 72.34
elmo T 75.34 95.39 89.51 77.81 94.76 91.48 82.97 90.85 76.48

Table 4.8: Dialogue act (da), Intent class (ic), and slot labeling (sl) F1 scores
by domain for the majority class, lstm, and elmobaselines on data annotated at
the sentence (S) and turn (T) level. Bold text denotes the model architecture with
the best performance for a given annotation granularity, i.e. sentence or turn level.
Red highlight denotes the model with the best performance on a given task across
annotation granularities.

Airline Fast Food Finance Insurance Media Software
A Single Joint Single Joint Single Joint Single Joint Single Joint Single Joint
S 97.32 97.44 91.03 91.26 94.07 94.27 94.63 94.99 94.27 94.47 93.66 94.00
T 84.04 84.64 65.69 65.35 76.29 75.68 75.34 75.89 77.81 78.56 82.97 83.76

Table 4.9: Joint training of ELMo on all agent DA data leads to a slight increase in
test performance. However, we expect stronger joint models that leverage transfer
learning should see a larger improvement. Bold text denotes the training strategy,
i.e. single domain (Base) or multi-domain (Joint), with the best performance for a
given annotation granularity. Red highlight denotes the strategy with the highest
DA F1 score across annotation granularities.

remove duplicate conversations and utterances with inconsistent annotations. The
most common source of inconsistent annotations in our dataset is imprecise selection
of slot label spans by annotators, which results in sub-token slot labels. While much
of this inconsistent data could likely be recovered by mapping each character span to
the nearest token span, we drop these utterances to ensure these errors have no effect
on our experimental results. Our post-processed data is pruned to approximately
90% of the original size. We form splits for each domain at the conversation level
by randomly assigning 70% of conversations to train, 10% to development, and 20%
to test. Conversation level splits enable the application of contextual models to our
dataset, as each conversation is assigned to a single split. However, our conversation
level splits result in imbalanced intent and slot label distributions.

Models: We evaluate the performance of two neural models on each domain.
The first is a bi-directional lstm (Hochreiter and Schmidhuber, 1997) with GloVe
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word embeddings, a hidden state of size 512, and two fully connected output layers
for slot labels and intent classes respectively. The second model, elmo, is similar to
the lstm architecture but it additionally uses pre-trained elmo (Peters et al., 2018)
embeddings in addition to GloVe word embeddings, which are kept frozen during
training. We combine these elmo and GloVe embeddings via concatenation. As a
sanity check, we also include a most frequent class (mfc) baseline. The mfc baseline
assigns the most frequent class label in the training split to every utterance u′ in the
test split for both da and ic tasks. To adapt the mfc baseline to sl, we compute
the most frequent slot label mfc(w) for each word type w in the training set. Then
given a test utterance u′, we assign the pre-computed, most frequent slot mfc(w′)
to each word w′ ∈ u′ if w′ is present in the training set. If a given word w′ ∈ u′ is not
present the training set, we assign the other slot label, which denotes the absence
of a slot, to w′. We use the AllenNLP (?) library to implement these models and
evaluate our performance. We use the Adam optimizer (?) with a learning rate of
0.001 to train the lstmand elmomodels for 50 epochs, using batch sizes 256 and
128, respectively. In addition, we employ early stopping on the validation loss with
a tolerance of 10 epochs to prevent over fitting.

Evaluation Metrics: We report micro F1 score to evaluate da and ic per-
formance of our models. Similarly, we use a span based F1 score, implemented in
the seqeval5 library, to evaluate SL performance.

4.5.1 Results
da/ic/sl Results. Table 4.8 presents the MFC, lstm, and elmoresults for

each domain, on the subset of 15,000 conversations annotated at both the turn and
sentence levels. In general for both granularities Turn and Sentence, both lstm, and
elmooutperform MFC significantly across all domains. Relative to the lstm, we
find that elmoobtains a modest increase in ic accuracy of 0.41 to 2.20 F1 points and
a significant increase in sl F1 score on all domains. Concretely, elmoboosts sl F1
performance by 3.16 to 13.17 F1 points. We see the biggest sl gains on the Insurance
domain, where sentence level elmoachieves the 13.17 point F1 gain and turn level
elmoachieves a 12.67 point F1 gain. Performance gains on the Airline domain are
also large; here, elmoincreases sentence and turn level sl F1 score by 12.38 and 9.86
F1 points, respectively. Both lstmand elmoyield similar performance in terms of
F1 score on da classification for which the difference in performance of these models
is within one F1 point across all domains. In general, the Fast Food domain yields
the overall lowest absolute F1 scores. Recall that Fast Food had the most diverse
dialogues (biases) as per Table 4.4 and the lowest IAA as per Table 4.7.

Sentence vs. Turn Level Annotation Units. Regarding the performance
of the lstmand elmomodels on sentence vs. turn level annotation units, our results
suggest that turn level annotations increase the difficulty of the da classification
task. This finding is evidenced by da performance of our models on the Fast Food
domain, for which F1 score is up to 25 F1 points lower for turn level annotations

5https://github.com/chakki-works/seqeval
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than sentence level annotations. We believe the increased difficulty of turn level da
relative to sentence level da is driven by a corresponding increase in the confusabil-
ity of turn level dialogue acts. This assertion of greater turn level da confusability
is supported by the lower inter annotator agreement (iaa) scores on turn level da,
which range from 0.314 to 0.521, relative to iaa scores for sentence level da, which
range from 0.598 to 0.709. This experimental result highlights the importance of
collecting sentence level annotations for conversational da datasets. Somewhat sur-
prisingly, our models achieve similar ic F1 and sl F1 scores on turn and sentence
level annotations. We hypothesize that the choice of annotation unit has a lesser im-
pact on the ic and sl tasks because customer utterances are more likely to focus on
a single speech act, whereas Agent utterances may be more complex in comparison
and include a greater number of speech acts.

Joint Training on Agent DA. Agent da classification naturally lends it-
self to joint training, given agent das are shared among all domains. To explore
the benefits of multi-domain training, we jointly train an agent da classification
model on all domains and report test results for each domain separately. These re-
sults are provided in Table 4.9. This straightforward technique leads to a consistent
but less than one point improvement in F1 scores. We expect that more sophisti-
cated transfer learning methods (?Howard and Ruder, 2018) could generate larger
improvements for these domains.

Overall, our results demonstrate that there is still headroom for performance
improvement, especially for the sl task, across all domains. Consequently, MultiDoGO
should be a relevant benchmark for developing new state-of-the-art NLU models for
the foreseeable future.

4.6 Future Directions

The data collection and annotation methodology that we use to gather MultiDoGO
can efficiently scale across languages. Several pilot experiments aimed at collecting
Spanish dialogues in the same domains have shown preliminary success in qual-
ity assessment. The production of a NLU dataset with parallel data in multiple
languages would be a boon to the cross-lingual research community. To date, cross-
lingual NLU research (Upadhyay et al., 2018; Schuster et al., 2018) has relied on
much smaller parallel corpora.

4.7 Conclusion

We present MultiDoGO, a newWizard-of-Oz dialogue dataset that is the largest
human-generated, multi-domain corpora of conversations to date. The scale and
range of this data provides a test-bed for future work in joint training and transfer
learning. Moreover, our comparison of sentence and turn level annotations provides
insight into the effect of annotation granularity on downstream model performance.

By pairing crowd-sourced labor (Chapter 3) with experts(Chapter 6, we bal-
ance the cost, diversity, and quality of these conversations in a scalable manner.
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We show that by adopting a modular annotation strategy, the crowds can reliably
annotate dialogues at a level commensurate with trained professional annotators.
Without any oversight, our data would be just as large, but it could not be trusted.

However, there is a stark difference in quality of the generated language be-
tween the crowd-sourced workers and the experts, in this case Amazon Customer
Service agents. The crowd-sourced workers have a financial incentive to complete
the task as quickly as possible and contribute sentences that are often prosaic, un-
grammatical, or repeated. This begs the question, can we create datasets using only
experts and avoid quality control issues altogether?
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Chapter 5: Expert Design

We need an evaluation methodology to show that expert-sourced datasets are
quantitatively superior to generalist-sourced ones. Since most datasets are evaluated
on the same types of data—squad test data is comparable to the training data—this
difference is not readily captured by standard quantitative metrics like accuracy or
F1. We propose a new dataset similar to Checklist (Ribeiro et al., 2020) for testing
coreference in machine translation in Section 5.1. Genuinely varied, realistic data
should create models that are robust to minor variations.

This dataset is designed by experts: specifically native German and native
English speakers, even if the methodology is automated. While a similar dataset of
the same size could be created without knowledge of either language, the templates
used as test data would prove be nonsensical or unnatural.

5.1 Meaningful Model Evaluation in Machine Translation

Due to the intrinsic evaluation of many datasets, higher standards of evaluation
would better understand the strength of machine learning models, and indirectly the
data used to train them. A model that has memorized several key answers upon
which it is then tested is not necessarily learning. A raw analysis of data overlap
appears this is at least partially a problem (Lewis et al., 2020). Datasets meant
to effectively and robustly evaluate trained datasets can determine how much of a
problem this poses ex-post-facto.

Machine translation is a complex task that requires diverse linguistic knowl-
edge and data in multiple languages, making it a good task for evaluating data
quality. We focus on German-English coreference resolution as a representative
task. The seemingly straightforward translation of the English pronoun it into Ger-
man requires knowledge at the syntactic, discourse and world knowledge levels for
proper pronoun coreference resolution (cr). A German pronoun can have three
genders, determined by its antecedent: masculine (er), feminine (sie) and neuter
(es).

Accuracy in machine translation is at an all-time high with the rise of neu-
ral architectures; but does accuracy alone suffice? Previous work (Hardmeier and
Federico, 2010; Miculicich Werlen and Popescu-Belis, 2017; Müller et al., 2018) pro-
posed evaluation methods for specifically pronoun translation. This has been of
special interest in context-aware nmt models that are capable of using discourse-
level information. Despite promising results, the question remains: Are transformers
(Vaswani et al., 2017) truly learning this task, or are they exploiting simple heuris-
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tics to make a coreference prediction? If so, they are learning heuristics, then these
must stem from limitations in the underlying data, which in turn suggests a need for
more natural and higher-quality training data. To empirically answer this question,
we propose extending ContraPro (Müller et al., 2018)—a contrastive challenge set
for automatic English→German pronoun translation evaluation—by making small
adversarial changes in the contextual sentences.

Our adversarial attacks on ContraPro will show if context-aware Transformer
nmt models can easily be misled by simple and unimportant changes to the input.
However, interpreting the results obtained from adversarial attacks can be difficult.
Positive results will show that nmt uses brittle heuristics to solve cr, without
identifying the exact heuristic. Modifying ContraPro alone will not test specific
phenomena.

For this reason, we propose an independent set of templates for coreferential
pronoun translation evaluation to systematically investigate which heuristics are be-
ing used. Inspired by previous work on cr (Raghunathan et al., 2010; Lee et al.,
2011), we will create templates tailored to evaluating the specific steps of an ideal-
ized cr pipeline. We will call this collection Contracat, Contrastive Coreference
Analytical Templates. The templates will be constructed in a completely con-
trolled manner, enabling us to easily create large number of coherent test examples
and provide unambiguous conclusions about the cr capabilities of nmt. While this
methodology depends on automation, a technique called into question in Chapter
3, the templates will be crucially written in collaboration with a native German
speaker. The procedure used in creating these templates can be adapted to many
language pairs with little effort.

We also propose a simple data augmentation approach using fine-tuning. This
methodology should not change the way cr is being handled by nmt and support
the hypothesis that automated data techniques have limited applicability. We will
publicly release a new dataset, ContraCAT, and the adversarial modifications to
ContraPro.

We motivate coreference resolution as a task in Section 5.2, discuss ContraPro
in Section 5.5.1, explain our proposed templates in Section refsec:templates,

5.2 Why is Coreference Resolution Relevant?

Addressing discourse phenomena is important for high-quality mt. Apart from
document-level coherence and cohesion, anaphoric pronoun translation has proven
to be an important testing ground for the ability of context-aware nmt to model
discourse. Anaphoric pronoun translation is the focus of several works in context-
aware nmt (Bawden et al., 2018; Voita et al., 2018; Stojanovski and Fraser, 2018;
Miculicich et al., 2018; Voita et al., 2019; Maruf et al., 2019).

However, the choice of an evaluation metric for cr is nontrivial. bleu-based
evaluation is insufficient for measuring improvement in cr (Hardmeier, 2012) with-
out carefully selecting or modifying test sentences for pronoun translation (Voita
et al., 2018; Stojanovski and Fraser, 2018). Alternatives to bleu include F1, par-
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Start:
Original sentence

The cat and the actor were hungry.
It (?) was hungrier.

Step 1:
Markable Detection

The cat and the actor were hungry.
It (?) was hungrier.

Step 2:
Coreference Resolu-
tion

The cat and the actor were hungry.
It was hungrier.

Step 3:
Language Translation

Der Schauspieler und die Katze waren hun-
grig.
Er / Sie / Es war hungriger.

Table 5.1: A hypothetical cr pipeline that sequentially resolves and translates a
pronoun.

tial credit, and oracle-guided approaches (Hardmeier and Federico, 2010; Guillou
and Hardmeier, 2016; Miculicich Werlen and Popescu-Belis, 2017). However, Guil-
lou and Hardmeier (2018) show that these metrics can miss important cases and
propose semi-automatic evaluation. In contrast, our evaluation will be completely
automatic. We focus on scoring-based evaluation (Sennrich, 2017), which works by
creating contrasting pairs and comparing model scores. Accuracy is calculated as
how often the model chooses the correct translation from a pool of alternative in-
correct translations. This is an evaluation metric applicable for multiple forms of
generated nlp data.

Bawden et al. (2018) manually create such a contrastive challenge set for
English→French pronoun translation. ContraPro (Müller et al., 2018) follows this
work, but creates the challenge set in an automatic way.

We show that making small variations in ContraPro substantially changes the
scores. Our work is related to adversarial datasets for testing robustness used in
Natural Language Processing tasks such as studying gender bias (Zhao et al., 2018;
Rudinger et al., 2018; Stanovsky et al., 2019), natural language inference (Glockner
et al., 2018) and classification (Wang et al., 2019b).

Jwalapuram et al. (2019) propose a model for pronoun translation evaluation
trained on pairs of sentences consisting of the reference and a system output with
differing pronouns. However, as Guillou and Hardmeier (2018) point out, this fails
to take into account that often there is not a 1:1 correspondence between pronouns
in different languages and that a system translation may be correct despite not
containing the exact pronoun in the reference, and incorrect even if containing the
pronoun in the reference, because of differences in the translation of the referent.
Moreover, introducing a separate model which needs to be trained before evaluation
adds an extra layer of complexity in the evaluation setup and makes interpretability
more difficult. In contrast, templates can easily be used to pinpoint specific issues
of an nmt model. Our templates follow previous work (Ribeiro et al., 2018; McCoy
et al., 2019; Ribeiro et al., 2020) where similar tests are proposed for diagnosing
nlp models.
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5.3 Do Androids Dream of Coreference Translation Pipelines?

Imagine a hypothetical coreference pipeline that generates a pronoun in a
target language, as illustrated in Table 5.1. First, markables (entities that can be
referred to by pronouns) are tagged in the source sentence (we restrict ourselves to
concrete entities as we wish to detect gender). Then, the subset of animate entities
are detected, and human entities are separated from other animate ones (since it
cannot refer to a human entity). Second, coreferences are resolved in the source
language. This entails addressing phenomena such as world knowledge, pleonastic
it, and event references. Third, the pronoun is translated into the target language.
This requires selecting the correct gender given the referent (if there is one), and
selecting the correct grammatical case for the target context (e.g., accusative, if the
pronoun is the grammatical object in the target language sentence).

This idealized pipeline would produce the correct pronoun in the target lan-
guage. The coreference steps resemble the rule-based approach implemented in
Stanford Corenlp’s CorefAnnotator (Raghunathan et al., 2010; Lee et al., 2011).
However, nmt models are unable to decouple the individual steps of this pipeline.
We propose to isolate each of these steps through targeted examples.

5.4 Model

We use a transformer model for all experiments and train a sentence-level
model as a baseline. The context-aware model in our experimental setup is a con-
catenation model (Tiedemann and Scherrer, 2017) (concat) which is trained on a
concatenation of consecutive sentences. concat is a standard transformer model
and it differs from the sentence-level model only in the way that the training data
is supplied to it. The training examples for this model are modified by prepending
the previous source and target sentence to the main source and target sentence.
The previous sentence is separated from the main sentence with a special token
<SEP>, on both the source and target side. This also applies to how we prepare
the ContraPro and Contracat data. We train the concatenation model on Open-
Subtitles2018 data prepared in this way. We remove documents overlapping with
ContraPro.

5.5 Adversarial Attacks

ContraPro, a contrastive challenge set, has limitations and our methodology
for creating our own dataset addresses them.

5.5.1 About ContraPro
ContraPro is a contrastive challenge set for English→German pronoun trans-

lation evaluation. The set consists of English sentences containing an anaphoric pro-
noun “it” and the corresponding German translations. It contains three contrastive
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translations, differing based on the gender of the translation of it : er, sie, or es. The
challenge set artificially balances the amount of sentences where it is translated to
each of these three German pronouns. The appropriate antecedent may be in the
main sentence or in a previous sentence. For evaluation, a model needs to produce
scores for all three possible translations, which are compared against ContraPro’s
gold labels.

We create automatic adversarial attacks on ContraPro that modify theoreti-
cally inconsequential parts of the context sentence before the occurrence of it. Con-
trary to expectations, accuracy degrades in all adversarial attacks.

5.5.2 Adversarial Attack Generation
Our three modifications are:

1. Phrase Addition: Appending and prepending phrases containing implausi-
ble antecedents: The Church is merciful but that’s not the point. It always
welcomes the misguided lamb.

2. Possessive Extension: Extending original antecedent with possessive noun
phrase: I hear her the doctor’s voice! It resounds to me from heights and
chasms a thousand times!

3. Synonym Replacement: Replacing original German antecedent with syn-
onym of different gender (note: der Vorhang (masc.) and die Gardine (fem.)
are synonyms meaning curtain):
The curtain rises. It rises. → Der Vorhang Die Gardine geht hoch. Er Sie
geht hoch.

Phrase Addition can be applied to all 12,000 ContraPro examples. The second
and third attack can only be applied to 3,838 and 1,531 examples, due to the required
sentence contingencies.

5.5.2.1 Phrase Addition
This attack modifies the previous sentence by appending phrases such as

“. . . but he wasn’t sure” and also prepending phrases such as “it is true:. . . ”. A range
of other simple phrases can be used, which we leave out for simplicity. All phrases
we tried provided lower scores. These attacks either introduce a human entity or
an event reference it (e.g., “it is true”) which are both not plausible antecedents for
the anaphoric it.

5.5.2.2 Possessive Extension
This attack introduces a new human entity by extending the original an-

tecedent A with a possessive noun phrase e.g., “the woman’s A”. Only two-thirds
of the 12,000 ContraPro sentences are linked to an antecedent phrase. Grammar
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Figure 5.1: Results with the sentence-level Baseline and concat on ContraPro
and three adversarial attacks. The adversarial attacks modify the context, there-
fore the Baseline model’s results on the attacks are unchanged and we omit them.
Phrase: prepending “it is true: . . . ”. Possessive: replacing original antecedent
A with “Maria’s A”. Synonym: replacing the original antecedent with different-
gender synonyms. Results for Phrase Addition are computed based on all 12,000
ContraPro examples, while for Possessive Extension and Synonym Replacement we
only use the suitable subsets of 3,838 and 1,531 ContraPro examples.

and misannotated antecedents exclude half of the remaining phrases. We put pos-
tag constraints on the antecedent phrases before extending them. This filters our
subset to 3,838 modified examples. Our possessive extensions can be humans (the
woman’s), organisations (the company’s) and names (Maria’s).

5.5.2.3 Synonym Replacement
This attack modifies the original German antecedent by replacing it with a

German synonym of a different gender. For this we first identify the English an-
tecedent and its most frequent synset in WordNet (Miller, 1995b). We obtain a
German synonym by mapping this WordNet synsets to GermaNet (Hamp and Feld-
weg, 1997) synsets. Finally, we modify the correct German pronoun translation to
correspond to the gender of the antecedent synonym.

Approximately one quarter of the nouns in our ContraPro examples are found
in GermaNet. In 1,531 cases, a synonym of different gender could be identified.

Understanding the pronoun/noun relationship is needed to score well on the
Synonym Replacement attack. This attack gets to the core of whether nmt uses cr
heuristics instead.

We evaluate a random sample of 100 auto-modified examples as a quality con-
trol metric. There are 11 issues with semantically-inappropriate synonyms. Over-
all, in 14 out of 100 cases, the model switches from correct to incorrect predictions
because of synonym-replacement. Only 4 out of these 14 cases come from the ques-
tionable synonyms, showing that the drop in ContraPro scores is meaningful.
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5.5.2.4 Evaluating Adversarial Attacks
Intuitively, the adversarial attacks should not contribute to large drops in

scores, since no meaningful changes are being made. If the model accuracy drops
some, but not all the way to the baseline, we can conclude that the concatenation
model handles cr, but likely with brittle heuristics. If the model accuracy drops
all the way to the original sentence-level baseline, then the model is memorizing the
inputs. These results can expose potential issues with the model, but it will still be
difficult to pinpoint the specific problems. This reveals a larger issue with pronoun
translation evaluation that cannot be addressed with simple adversarial attacks on
existing general-purpose challenge sets. We propose Contracat, a more systematic
approach that targets each of the previously outlined cr pipeline steps with data
synthetically generated from corresponding templates.

Automatic adversarial attacks offer less freedom than templates as many sys-
tematic modifications cannot be applied to the average sentence. Thus, our Con-
tracat templates will be built on the hypothetical coreference pipeline in Section 5.3
that target each of the three steps: i) Markable Detection, ii) Coreference Resolu-
tion and iii) Language Translation. Our minimalistic templates draw entities from
sets of animals, human professions (McCoy et al., 2019), foods, and drinks, along
with associated verbs and attributes. We use these sets to fill slots in our templates.
Animals and foods are natural choices for subject and object slots referenced by it.
Restricting our sets to interrelated concepts with generically applicable verbs—all
animals eat and drink—ensures semantic plausibility. Other object sets, such as
buildings, would cause semantic implausibility with certain verbs.

5.5.2.5 Template Generation
Our templates consist of a previous sentence that introduces at least one entity

and a main sentence containing the pronoun it. We use contrastive evaluation to
judge anaphoric pronoun translation accuracy for each template; we create three
translated versions for each German gender corresponding to an English sentence,
e.g., “The cat ate the egg. It rained.” and the corresponding “Die Katze hat das Ei
gegessen. Er/Sie/Es regnete”. To fill a template, we only draw pairs of entities with
two different genders, i.e., for animal a and food f : gender(a) 6= gender(f). This
way we can determine whether the model has picked the right antecedent.

First, we will create templates that analyze priors of the model for choosing
a pronoun when no correct translation is obvious. Then, we will create templates
with correct translations, guided by the three broad coreference steps. Table 5.3
provides examples for our templates.

5.5.2.6 Priors
Prior templates do not have a correct answer, but help to understand the

model’s biases. We will expose three priors with our templates: i) grammatical
roles prior (e.g., subject) ii) position prior (e.g., first antecedent) and iii) a general
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prior if no antecedent and only a verb is present.
For i), we will create a Grammatical Role template where both subject and

object are valid antecedents.
For ii), we will create a Position template where two objects are enumerated

as shown in Table 5.3. We will create an additional example where the entities order
is reversed and test if there are priors for specific nouns or alternatively positions in
the sentence.

For iii), we will create a Verb template, expecting that certain transitive verbs
trigger certain object gender choice. We will use 100 frequent transitive verbs and
create sentences such as the example in Table 5.3.

5.5.2.7 Markable Detection with a Humanness Filter
Before doing the actual cr, the model will need to identify all possible entities

that it can refer to. We will construct a template that contains a human and animal
which are in principle plausible antecedents, if not for the condition that it does not
refer to people. For instance, the model should always choose cat in “ The actress
and the cat are hungry. However it is hungrier.”.

5.5.2.8 Coreference Resolution
Having determined all possible antecedents, the model will have to choose

the correct one, relying on semantics, syntax, and discourse. The pronoun it can in
principle be used as an anaphoric (referring to entities), event reference or pleonastic
pronoun (Loáiciga et al., 2017). For the anaphoric it, we identify two major ways
of identifying the antecedent: lexical overlap and world knowledge. Our templates
for these categories are meant to be simple and solvable.

Overlap: Broadly speaking the subject, verb, or object can overlap from the
previous sentence to the main sentence, as well as combinations of them. This gives
us five templates: i) subject-overlap ii) verb-overlap iii) object-overlap iv) subject-
verb-overlap and v) object-verb-overlap. We always use the same template for the
context sentence, e.g., “The cat ate the apple and the owl drank the water.”. For
the object-verb-overlap we would then create the main sentence “It ate the apple
quickly.” and expect the model to choose cat as antecedent. To keep our overlap
templates order-agnostic, we vary the order in the previous sentence by also creating
“The owl drank the water and the cat ate the apple.”

World Knowledge: cr has been traditionally seen as challenging as it re-
quires world knowledge. Our templates will test simple forms of world knowledge by
using attributes that either apply to animal or food entities, such as cooked for food
or hungry for animals. We then evaluate whether the model chooses e.g., cat in “The
cat ate the cookie. It was hungry.” The model occasionally predicts answers that
require world knowledge, but most predictions are guided by a prior for choosing
the neuter es or a prior for the subject.

Pleonastic and Event Templates: For the other two ways of using it, event
reference and pleonastic-it, we again create a default previous sentence (“The cat

54



0

25

50

75

100

44 44

Markables

Baseline

CONCAT
33

47

Overlap

32

57

World

100 100
Pleonastic

100 96

Event

23

94

Gender

Figure 5.2: Results comparing the sentence-level baseline to concat on Contracat.
Pronoun translation pertaining to World Knowledge and language-specific Gender
Knowledge benefits the most from additional context.

ate the apple.”). For the main sentence, we used four typical pleonastic and event
reference phrases such as “It is a shame” and “It came as a surprise”. We expect
the model to correctly choose the neuter es as a translation every time.

5.5.2.9 Translation to German
After cr, the decoder has to translate from English to German. In our con-

trastive scoring approach the translation of the English antecedent to German is
already given. However the decoder is still required to know the gender of the Ger-
man noun to select between er, sie or, es. We will test this with a list of concrete
nouns selected from Brysbaert et al. (2014), which we filter for nouns that occur
more than 30 times in the training data. This selects 2051 nouns that are plugged
into: “I saw a N . It was {big, small}.”.

5.5.3 Results
The model performs poorly when actual cr is required. It frequently falls

back to choosing the neuter es or preferring a position (e.g., first of two entities)
for determining the gender. For Markable Detection the model always predicts the
neuter es regardless of the actual genders of the entities.

In the Overlap template, the model fails to recognize the overlap and has a
general preference for one of the two clauses. For instance in the case of verb-overlap,
the model had a solid accuracy of 64.1% if the verb overlapped from the first clause
(“The cat ate and the dog drank. It ate a lot.”) but a weak accuracy of 39.0% when
the verb overlapped from the second clause (“The cat ate and the dog drank. It drank
a lot.”.) The overall accuracy for the overlap templates is 47.2%, with little variation
across the types of overlap. Adding more overlap, e.g., by overlapping both the verb
and object (“It ate the apple happily”), yields no improvement. Overall, the model
pays very little attention to overlaps when resolving pronouns.

We also see weak performance for world knowledge. An accuracy of 55.7%
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is slightly above the heuristic of randomly choosing an entity (= 50.0%). With a
strong bias for the neuter es, the model has a high accuracy of 96.2% for event
reference and pleonastic templates, where es is always the correct answer. Based
on the strong performance on the Gender template in ??, we conclude the model
consistently memorized the gender of concrete nouns. Hence, cr mistakes stem from
Step 1 or Step 2, suggesting that the model failed to learn proper cr.

Antecedent-free augmentation
Source You let me worry about that. <SEP> How much you take for it?
Reference Lassen Sie das meine Sorge sein. <SEP> Wie viel kostet er?
Augmentation 1 Lassen Sie das meine Sorge sein. <SEP> Wie viel kostet sie?
Augmentation 2 Lassen Sie das meine Sorge sein. <SEP> Wie viel kostet es?

Table 5.2: Examples of training data augmentations. The source side of the aug-
mented examples remains the same.

5.6 Augmentation

We present an approach for augmenting the training data. While challenging
for nlp, we focus on a narrow problem which lends itself to easier data manipulation.
Our previous analyses show that our model is capable of modeling the gender of
nouns. However, they also show a strong prior for translating it to es and very little
cr capability. Our goal with the augmentation is to break off the strong prior and
test if this can improve cr in the model.

We augment our training data and call it Antecedent-free augmentation (afa).
We identify candidates for augmentation as sentences where a coreferential it refers
to an antecedent not present in the current or previous sentence (e.g., I told you
before. <SEP> It is red. → Ich habe dir schonmal gesagt. <SEP> Es ist rot.). We
create augmentations by adding two new training examples where the gender of the
German translation of “it” is modified (e.g., the two new targets are “Ich habe dir
schonmal gesagt. <SEP> Er ist rot.” and “Ich habe dir schonmal gesagt. <SEP>
Sie ist rot.”). The source side remains the same. Table 5.2 provides an additional
example. Antecedents and coreferential pronouns are identified using a cr tool
(Clark and Manning, 2016a,b). We fine-tune our already trained concatenation
model on a dataset consisting of the candidates and the augmented samples. As
a baseline, we fine-tune on the candidates to confidently say that any potential
improvements come from the augmentations.

5.6.1 Results
Results for adversarial attacks on ContraPro and on our templates are inde-

pendent and are discussed separately.
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Template Target Example

Priors
Grammatical Role The cat ate the egg. It (cat/egg) was big.
Order I stood in front of the cat and the dog. It (cat/dog) was

big.
Verb Wow! She unlocked it.

Markable Detection
Filter Humans The cat and the actress were happy. However it (cat) was

happier.

Coreference Resolution
Lexical Overlap The cat ate the apple and the owl drank the water. It (cat/

dogFir) ate the apple quickly.
World Knowledge The cat ate the cookie. It (cat) was hungry.
Pleonastic it The cat ate the sausage. It was raining.
Event Reference The cat ate the carrot. It came as a surprise.

Language Translation
Antecedent Gender I saw a cat. It(cat) was big. →

Ich habe eine Katze gesehen. Sie (cat) war groß.

Table 5.3: Template examples targeting different cr steps and substeps. } for
Animals. For German, we create three versions with er, sie, or es as different
translations of it.

5.6.1.1 Adversarial Attacks
afa provides large improvements, scoring 85.3% on ContraPro. Results are

in Figure ??. The afa baseline (fine-tuning on the augmentation candidates only)
improves by 1.94%, presumably because many candidates consist of coreference
chains of “it” and the model learns they are important for coreferential pronouns.
However, the improvement is small compared to afa.

Results on ContraPro for each gender (see Appendix) show that performance
on er and sie is substantially increased, suggesting that the augmentation success-
fully removes the strong bias towards es. Templates provide further evidence about
this. Although, the adversarial attacks lower afa scores, in contrast to concat, the
model is more robust and the performance degradation is substantially lower (except
on the synonym attack). We experimented with different learning rates during fine-
tuning and present results with the lr that obtained the best baseline ContraPro
score. Detailed scores in the Appendix show how lr can balance the scores across
the three different genders. Furthermore, concat and afa obtain 31.5 and 32.2
BLEU on ContraPro, showing that this fine-tuning procedure, which is tailored to
pronoun translation, does not lead to any degradation in general translation quality.
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5.6.1.2 Templates
From the prior templates, the prior over gender pronouns is more evenly spread

and not concentrated on es. This also provides for a more even distribution on the
Position and Role Prior template.

The augmented model is also substantially better on markable detection, im-
proving by 27.6%. Results for templates are in Figure 5.3.
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Figure 5.3: ContraCAT results with unaugmented and augmented concat. We
speculate that readjusting the prior over genders in augmented concat explains
the improvements on Markable and Overlap.

No improvements are observed on the World Knowledge template. Pleonastic
cases are still accurate, although not perfect as with concat. The Event template
identifies a systematic issue with our augmentation. We presume this is due to
the cr tool marking cases where it refers to events. We do not apply any filtering
and augment these cases as well, thus create wrong examples (an event reference
it cannot be translated to er or sie). As a result, the scores are significantly lower
compared to concat. This issue with our model is not visible on ContraPro and
the adversarial attacks results. In contrast, the Event template easily identifies this
problem.

afa performs on par with the unaugmented baseline on the Gender template.
However, despite increasing by 3.8%, results on Overlap are still underwhelming.

afa performs on par with the unaugmented baseline on the Gender template.
However, despite increasing by 3.8%, results on Overlap are still underwhelming.
Our analysis shows that augmentation helps in changing the prior. We believe this
provides for improved cr heuristics which in turn provide for an improvement in
coreferential pronoun translation. Nevertheless, the Overlap template shows that
augmented models still do not solve cr in a fundamental way.

5.7 Recap

In this work, we will study how and to what extent cr is handled in context-
aware nmt. This work aims to show that that standard challenge sets can easily
be manipulated with adversarial attacks that cause dramatic drops in performance,
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suggesting that nmt uses a set of heuristics to solve the complex task of cr. At-
tempting to diagnose the underlying reasons, we propose targeted templates which
systematically test the different aspects necessary for cr. This analysis will show
that while some type of cr such as pleonastic and event cr are handled well, nmt
does not solve the task in an abstract sense. We also propose a data augmenta-
tion approach to see if simple data modifications can improve model accuracy. This
methodology will illustrate the dependence on data by models, and strengthen our
claims that low-cost data generation techniques are approximating rather than solv-
ing nlp tasks. Having identified limitations in existing models, we will then be able
to argue for concrete data extensions for coreference resolution. This methodology—
creating an adverserial dataset which tests the understanding of a model—can be
applied to most nlp tasks.
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Chapter 6: Expert Participation

Expert-driven datasets require a large investment of time, relationship-building,
and money. As a contrast to the earlier work, we create a deception dataset using
only experts. Participants both generate and annotate data in the span of a game
that usually lasts over a month. And they are handsomely compensated for their ef-
fort. The resulting product is a gold standard of conversational nlp data in terms of
quality of language, diversity, and naturalness.1 The conversations and annotations
thereof would not be possible without experts from the community.

6.1 Where Does One Find Long-Term Deception?

A functioning society is impossible without trust. In online text interactions,
users are typically trusting (Shneiderman, 2000), but this trust can be betrayed
through false identities on dating sites (Toma and Hancock, 2012), spearphishing at-
tacks (Dhamija et al., 2006), sockpuppetry (Kumar et al., 2017) and, more broadly,
disinformation campaigns (Kumar and Shah, 2018). Beyond such one-off antiso-
cial acts directed at strangers, deception can also occur in sustained relationships,
where it can be strategically combined with truthfulness to advance a long-term
objective (Cornwell and Lundgren, 2001; Kaplar and Gordon, 2004).

We introduce a dataset to study the strategic use of deception in long-lasting
relationships. To collect reliable ground truth in this complex scenario, we design an
interface for players to naturally generate and annotate conversational data while
playing a negotiation-based game called Diplomacy. These annotations are done in
real-time as the players send and receive messages. While this game setup might
not directly translate to real-world situations, it enables computational frameworks
for studying deception in a complex social context while avoiding privacy issues.

After providing background on the game of Diplomacy and our intended de-
ception annotations (Section 6.2), we discuss our study (Section 6.3). To probe the
value of the resulting dataset, we develop lie prediction models (Section 6.4) and
analyze their results (Section 6.5).

1Denis Peskov, Benny Chang, Ahmed Elgohary, Joe Barrow, Cristian Danescu-Niculescu-Mizil,
and Jordan Boyd-Graber. 2020. It Takes Two to Lie: One to Lie and One to Listen. In Proceedings
of The Association for Computational Linguistics.
Peskov was responsible for designing the task, gathering the participants, running the games,
building half the models, part of the data analysis, the visualizations, and the paper writing.
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Message Sender’s
intention

Receiver’s
percep.

If I were lying to you, I’d smile and say “that sounds great.”
I’m honest with you because I sincerely thought of us as
partners.

Lie Truth

You agreed to warn me of unexpected moves, then didn’t
. . . You’ve revealed things to England without my permis-
sion, and then made up a story about it after the fact!

Truth Truth

. . . I have a reputation in this hobby for being sincere. Not
being duplicitous. It has always served me well. . . . If you
don’t want to work with me, then I can understand that . . .

Lie Truth

(Germany attacks Italy)

Well this game just got less fun Truth Truth

For you, maybe Truth Truth

Table 6.1: An annotated conversation between Italy (white) and Germany (gray)
at a moment when their relationship breaks down. Each message is annotated by
the sender (and receiver) with its intended or perceived truthfulness; Italy is lying
about . . . lying. A full transcript of this dialog is available in Appendix, Table ??.

6.2 Diplomacy

The Diplomacy board game places a player in the role of one of seven European
powers on the eve of World War I. The goal is to conquer a simplified map of Europe
by ordering armies in the field against rivals. Victory points determine the success
of a player and allow them to build additional armies; the player who can gain
and maintain the highest number of points wins.2 The mechanics of the game are
simple and deterministic: armies, represented as figures on a given territory, can
only move to adjacent spots and the side with the most armies always wins in a
disputed move. The game movements become publicly available to all players after
the end of a turn.

Because the game is deterministic and everyone begins with an equal amount of
armies, a player cannot win the game without forming alliances with other players—
hence the name of the game: Diplomacy. Conquering neighboring territories de-
pends on support from another player’s armies. After an alliance has outlived its
usefulness, a player often dramatically breaks it to take advantage of their erstwhile
ally’s vulnerability. Table 6.1 shows the end of one such relationship. As in real
life, to succeed a betrayal must be a surprise to the victim. Thus, players pride
themselves on being able to lie and detect lies. Our study uses their skill and pas-
sion to build a dataset of deception created by battle-hardened diplomats. Senders

2In the parlance of Diplomacy games, points are “supply centers” in specific territories (e.g.,
London). Having more supply centers allows a player to build more armies and win the game by
capturing more than half of the 34 supply centers on the board.
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Figure 6.1: Counts from one game featuring an Italy (green) adept at lying but
who does not fall for others’ lies. The player’s successful lies allow them to gain an
advantage in points over the duration of the game. In 1906, Italy lies to England be-
fore breaking their relationship. In 1907, Italy lies to everybody else about wanting
to agree to a draw, leading to the large spike in successful lies.

annotate whether each message they write is an actual lie and recipients anno-
tate whether each message received is a suspected lie. Further details on the
annotation process are in Section 6.3.1.

6.2.1 A game walk-through
Figure 6.1 shows the raw counts of one game in our dataset. But numbers do

not tell the whole story. We analyze this case study using rhetorical tactics (Cialdini
and Goldstein, 2004), which Oliveira et al. (2017) use to dissect spear phishing e-
mails and Anand et al. (2011) apply to persuasive blogs. Mentions of tactics are in
italic (e.g., authority. For the rest of the paper, we will refer to players via the name
of their assigned country.
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Through two lie-intense strategies—convincing England to betray Germany
and convincing all remaining countries to agree to a draw—Italy gains control of
the board. Italy’s first deception is a plan with Austria to dismantle Turkey. Turkey
believes Italy’s initial assurance of non-aggression in 1901. Italy begins by excusing
his initial silence due to a rough day at work, evoking empathy and likability. While
they do not fall for subsequent lies, Turkey’s initial gullibility cements Italy’s first-
strike advantage. Meanwhile, Italy proposes a long-term alliance with England
against France, packaging several small truths with a big lie. The strategy succeeds,
eliminating Italy’s greatest threat.

Local threats eliminated, Italy turns to rivals on the other end of the map.
Italy persuades England to double-cross its long-time ally Germany in a moment of
scarcity : if you do not act now, there will be nowhere to expand. England accepts
help from ascendant Italy, expecting reciprocity. However, Italy aggressively and
successfully moves against England. The last year features a meta-game deception.
After Italy becomes too powerful to contain, the remaining four players team up.
Ingeniously, Italy feigns acquiescence to a five-way draw, individually lying to each
player and establishing authority while brokering the deal. Despite Italy’s record
of deception, the other players believe the proposal (annotating received messages
from Italy as truthful) and expect a 1907 endgame, the year with the most lies.
Italy goes on the offensive and knocks out Austria.

Each game has relationships that are forged and then riven. In another game,
an honest attempt by a strong Austria to woo an ascendant Germany backfires,
knocking Austria from the game. Germany builds trust with Austria through a be-
lieved fictional experience as a Boy Scout in Maine (likability). In a third game, two
consecutive unfulfilled promises by an ambitious Russia leads to a quick demise, as
their subsequent excuses and apologies are perceived as lies (failed consistency). In
another game, England, France, and Russia simultaneously attack Germany after
offering duplicitous assurances. Game outcomes vary despite the identical, balanced
starting board, as different players use unique strategies to persuade, and occasion-
ally deceive, their opponents.

6.2.2 Defining a lie
Statements can be incorrect for a host of reasons: ignorance, misunderstand-

ing, omission, exaggeration. (Gokhman et al., 2012) highlight the difficulty of finding
willful, honest, and skilled deception outside of short-term, artificial contexts (De-
Paulo et al., 2003). Crowdsourced and automatic datasets rely on simple nega-
tions (Pérez-Rosas et al., 2017) or completely implausible claims (e.g., “Tipper Gore
was created in 1048” from (Thorne et al., 2018b)). While lawyers in depositions and
users of dating sites will not willingly admit to their lies, the players of online games
are more willing to revel in their deception.

We must first define what we mean by deception. Lying is a mischaracteriza-
tion; it’s thus no surprise that a definition may be divisive or the subject of academic
debate (Gettier, 1963). We provide this definition to our users: “Typically, when
[someone] lies [they] say what [they] know to be false in an attempt to deceive the
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Figure 6.2: Every time they send a message, players say whether the message is
truthful or intended to deceive. The receiver then labels whether incoming messages
are a lie or not. Here Italy indicates they believe a message from England is truthful
but that their reply is not.

listener” (Siegler, 1966). An orthodox definition requires the speaker to utter an
explicit falsehood (Mahon, 2016); skilled liars can deceive with a patina of veracity.
A similar definition is required for prosecution of perjury, leading to a paucity of
convictions (Bogner et al., 1974). Indeed, when we ask participants what a lie looks
like, they mention evasiveness, shorter messages, over-qualification, and creating
false hypothetical scenarios (DePaulo et al., 2003).

6.2.3 Annotating truthfulness
Previous work on the language of Diplomacy (Niculae et al., 2015) lacks ac-

cess to players’ internal state and was limited to post-hoc analysis. We improve on
this by designing our own interface that gathers players’ intentions and perceptions
in real-time (Section 6.3.1). As with other highly subjective phenomena like sar-
casm (González-Ibáñez et al., 2011; Bamman and Smith, 2015), sentiment (Pang
et al., 2008) and framing (Greene and Resnik, 2009), the intention to deceive is
reflective on someone’s internal state. Having individuals provide their own labels
for their internal state is essential as third party annotators could not accurately
access it (Chang et al., 2020).

Most importantly, our gracious players have allowed this language data to
be released in accordance with irb authorized anonymization, encouraging further
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work on the strategic use of deception in long-lasting relations.3

6.3 Engaging a Community of Liars

This dataset requires both a social and technical setup: finding a community
that plays Diplomacy online and having them use a framework for annotating these
messages.

6.3.1 Technical implementation
We need two technical components for our study: a game engine and a chat

system. We choose Backstabbr4 as an accessible game engine on desktop and mobile
platforms: players input their moves and the site adjudicates game mechanics (Chio-
dini, 2020). Our communication framework is atypical. Thus, we create a server
on Discord,5 the group messaging platform most used for online gaming and by the
online Diplomacy community (Coberly, 2019). The app is reliable on both desktop
and mobile devices, free, and does not limit access to messages. Instead of direct
communication, players communicate with a bot; the bot does not forward messages
to the recipient until the player annotates the messages (Figure 6.2). In addition,
the bot scrapes the game state from Backstabbr to sync game and language data.

Annotation of lies is a forced binary choice in our experiment. Explicitly calling
a statement a lie is difficult, and people would prefer degrees of deception (Bavelas
et al., 1990; Bell and DePaulo, 1996). Thus, we follow previous work that views
linguistic deception as binary (Buller et al., 1996; Braun and Van Swol, 2016). Some
studies make a more fine-grained distinction; for example, Swol et al. (2012) separate
strategic omissions from blatant lies (we consider both deception). However, because
we are asking the speakers themselves (and not trained annotators) to make the
decision, we follow the advice from crowdsourcing to simplify the task as much as
possible (Snow et al., 2008; Sabou et al., 2014). Long messages can contain both
truths and lies, and we ask players to categorize these as lies since the truth can be
a shroud for their aims.

6.3.2 Building a player base
The Diplomacy players maintain an active, vibrant community through real-

life meetups and online play (Hill, 2014; Chiodini, 2020). We recruit top players
alongside inexperienced but committed players in the interest of having a diverse
pool. Our experiments include top-ranked players and community leaders from
online platforms, grizzled in-person tournament players with over 100 past games,
and board game aficionados. These players serve as our foundation and during

3Data available at http://go.umd.edu/diplomacy_data and as part of ConvoKit http://
convokit.cornell.edu.

4https://www.backstabbr.com
5https://www.discord.com
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Category Value
Message Count 13,132
actual lie Count 591
suspected lie Count 566
Average # of Words 20.79

Table 6.2: Summary statistics for our train data (nine of twelve games). Messages
are long and only five percent are lies, creating a class imbalance.

initial design helped us to create a minimally annoying interface and a definition of
a lie that would be consistent with Diplomacy play. Good players—as determined
by active participation, annotation and game outcome—are asked to play in future
games.

In traditional crowdsourcing tasks compensation is tied to piecework that takes
seconds to complete (Buhrmester et al., 2011). Diplomacy games are different in
that they can last a month. . . and people already play the game for free. Thus, we do
not want compensation to interfere with what these players already do well: lying.
Even the obituary of the game’s inventor explains

Diplomacy rewards all manner of mendacity: spying, lying, bribery, ru-
mor mongering, psychological manipulation, outright intimidation, be-
trayal, vengeance and backstabbing (the use of actual cutlery is discour-
aged)” (Fox, 2013).

Thus, our goal is to have compensation mechanisms that get people to play this
game as they normally would, finish their games, and put up with our (slightly)
cumbersome interface. Part of the compensation is non-monetary: a game experi-
ence with players that are more engaged than the average online player.

To encourage complete games, most of the payment is conditioned on finishing
a game, with rewards for doing well in the game. Players get at least $40 upon
finishing a game. Additionally, we provide bonuses for specific outcomes: $24 for
winning the game (an evenly divisible amount that can be split among remaining
players) and $10 for having the most successful lies, i.e., statements they marked
as a lie that others believed.6 Diplomacy usually ends with a handful of players
dividing the board among themselves and agreeing to a tie. In the game described
in Section 6.2.1, the remaining four players shared the winner’s pool with Italy after
10 in-game years, and Italy won the prize for most successful lies.

6.3.3 Data overview
Table 6.2 quantitatively summarizes our data. Messages vary in length and

can be paragraphs long (Figure 6.3). Close to five percent of all messages in the
6The lie incentive is relatively small (compared to incentives for participation and winning) to

discourage an opportunistic player from marking everything as a lie. Games were monitored in
real-time and no player was found abusing the system (marking more than ∼20% lies).
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Figure 6.3: Individual messages can be quite long, wrapping deception in pleas-
antries and obfuscation.

dataset are marked as lies and almost the same percentage (but not necessarily the
same messages) are perceived as lies, consistent with the “veracity effect” (Levine
et al., 1999). In the game discussed above, eight percent of messages are marked
as lies by the sender and three percent of messages are perceived as lies by the
recipient; however, the messages perceived as lies are rarely lies (Figure 6.4).

6.3.4 Demographics and self-assessment
We collect anonymous demographic information from our study participants:

the average player identifies as male, between 20 and 35 years old, speaks English
as their primary language, and has played over fifty Diplomacy games.7 Players
self-assess their lying ability before the study. The average player views themselves
as better than average at lying and average or better than average at perceiving lies.

In a post-game survey, players provide information on whom they betrayed
and who betrayed them in a given game. This is a finer-grained determination than
the post hoc analysis used in past work on Diplomacy (Niculae et al., 2015). We
ask players to optionally provide linguistic cues to their lying and to summarize the
game from their perspective.

6.3.5 An ontology of deception
Four possible combinations of deception and perception can arise from our

data. The sender can be lying or telling the truth. Additionally, the receiver can
perceive the message as deceptive or truthful. We name the possible outcomes for lies

7Our data skews 80% male and 95% of the players speak English as a primary language. Ages
range from eighteen and sixty-four. Game experience is distributed across beginner, intermediate,
and expert levels.
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Receiver’s perception
Truth Lie

S
en

d
er

’s
in

te
nt

io
n Truth Straightforward Salut! Just

checking in, letting you know the
embassy is open, and if you de-
cide to move in a direction I might
be able to get involved in, we can
probably come to a reasonable ar-
rangement on cooperation. Bonne
journee!

Cassandra I don’t care if we target
T first or A first. I’ll let you decide.
But I want to work as your part-
ner. . . . I literally will not message
anyone else until you and I have a
plan. I want it to be clear to you
that you’re the ally I want.

Lie Deceived You, sir, are a terrific
ally. This was more than you
needed to do, but makes me feel
like this is really a long term thing!
Thank you.

Caught So, is it worth us having
a discussion this turn? I sincerely
wanted to work something out with
you last turn, but I took silence to
be an ominous sign.

Table 6.3: Examples of messages that were intended to be truthful or deceptive
by the sender or receiver. Most messages occur in the top left quadrant (Straight-
forward). Figure 6.4 shows the full distribution. Both the intended and perceived
properties of lies are of interest in our study.

as Deceived or Caught, and the outcomes for truthful messages as Straightforward or
Cassandra,8 based on the receiver’s annotation (examples in Table 6.3, distribution
in Figure 6.4).

6.4 Detecting Lies

We build computational models both to detect lies to better understand our
dataset. The data from the user study provide a training corpus that maps language
to annotations of truthfulness and deception. Our models progressively integrate
information—conversational context and in-game power dynamics—to approach hu-
man parity in deception detection.

6.4.1 Metric and data splits
We investigate two phenomena: detecting what is intended as a lie and what is

perceived as a lie. However, this is complicated because most statements are not lies:
less than five percent of the messages are labeled as lies in both the actual lie and
the suspected lie tasks (Table 6.2). Our results use a weighted F1 feature across
truth and lie prediction, as accuracy is an inflated metric given the class imbal-
ance (Japkowicz and Stephen, 2002). We thus adopt an in-training approach (Zhou
and Liu, 2005) where incorrect predictions of lies are penalized more than truth-

8In myth, Cassandra was cursed to utter true prophecies but never be believed. For a discussion
of Cassandra’s curse vis a vis personal and political oaths, see Torrance (2015).
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Figure 6.4: Most messages are truthful messages identified as the truth. Lies are
often not caught. Table 6.3 provides an example from each quadrant.

ful statements. The relative penalty between the two classes is a hyper-parameter
tuned on F1.

Before we move to computational models for lie detection, we first establish
the human baseline. We know when senders were lying and when receivers spotted
a lie. Humans spot 88.3% of lies. However, given the class imbalance, this sounds
better than it is. Following the suggestion of (Levine et al., 1999), we focus on the
detection of lies, where humans have a 22.5 Lie F1.

To prevent overfitting to specific games, nine games are used as training data,
one is used for validation for tuning parameters, and two games are test data. Some
players repeat between games.

6.4.2 Logistic regression
Logistic regression models, described in Background Section 2.4.1, have inter-

pretable coefficients which show linguistic phenomena that correlate with lies. A
word that occurs infrequently overall but often in lies, such as ‘honest’ and ‘can-
didly’, helps identify which messages are lies.

(Niculae et al., 2015) propose linguistic Harbingers that can predict decep-
tion. These are word lists that cover topics often used in interpersonal communication—
claims, subjectivity, premises, contingency, comparisons, expansion, temporal lan-
guage associated with the future, and all other temporal language (complete word
list in Appendix, Table ??). The Harbingers word lists do not provide full coverage,
as they focus on specific rhetorical areas. A logistic regression model with all word
types as features further improves F1.
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Figure 6.5: Test set results for both our actual lie and suspected lie tasks.
We provide baseline (Random, Majority Class), logistic (language features, bag of
words), and neural (combinations of a lstm with bert) models. The neural model
that integrates past messages and power dynamics approaches human F1 for actual
lie (top). For actual lie, the human baseline is how often the receiver correctly
detects senders’ lies. The suspected lie lacks such a baseline.

Power dynamics influence the language and flow of conversation (Danescu-
Niculescu-Mizil et al., 2012, 2013; Prabhakaran et al., 2013). These dynamics may
influence the likeliness of lying; a stronger player may feel empowered to lie to their
neighbor. Recall that victory points (Section 6.2) encode how well a player is doing
(more is better). We represent the power differential as the difference between the
two players. Peers will have a zero differential, while more powerful players will have
a positive differential with their interlocutor. The differential changes throughout
the game, so this feature encodes the difference in the season the message was sent.
For example, a message sent by an Italy with seven points to a Germany with two
points in a given season would have a value of five.

6.4.3 Neural
While less interpretable, neural models are often more accurate than logistic

regression ones (Ribeiro et al., 2016; Belinkov and Glass, 2019). We build a stan-
dard long short-term memory network (Hochreiter and Schmidhuber, 1997, lstm),
described in Background Section 2.4.4, to investigate if word sequences—ignored by
logistic regression—can reveal lies.
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Model Prediction
Correct Wrong

P
la

ye
r

P
re

d
ic

ti
on

Correct Both Correct Not sure what
your plan is, but I might be able
to support you to Munich.

Player Correct Don’t believe
Turkey, I said nothing of the sort.
I imagine he’s just trying to cause
an upset between us.

Wrong Model Correct Long time no
see. Sorry for the stab earlier. I
think we should try to work to-
gether to stop france from win-
ning; if we work together we can
stop france from getting 3 more
centers, and then we will all win
in a 3, 4, or 5 way draw when the
game is hard-capped at 1910.

Both Wrong I’m considering
playing fairly aggressive against
England and cutting them off at
the pass in 1901, your support for
that would be very helpful.

Table 6.4: An example of an actual lie detected (or not) by both players and our
best computational model (Context lstm + Power) from each quadrant. Both the
model and the human recipient are mostly correct overall (Both Correct), but they
are both mostly wrong when it comes to specifically predicting lies (Both Wrong).

Integrating message context and power dynamics improves on the neural base-
line. A Hierarchical lstm can help focus attention on specific phrases in long con-
versational contexts. In the same way it would be difficult for a human to determine
prima facie if a statement is a lie without previous context, we posit that methods
that operate at the level of a single message are limited in the types of cues they
can extract. The hierarchical lstm is given the context of previous messages when
determining if a given message is a lie, which is akin to the labeling task humans
do when annotating the data. The model does this by encoding a single message
from the tokens, and then running a forward lstm over all the messages. For each
message, it looks at both the content and previous context to decide if the current
message is a lie. Fine-tuning bert (Devlin et al., 2019) embeddings, introduced
in Background Section 2.4.5, to this model did not lead to notable improvement in
F1, likely due to the relative small size of our training data. Last, we incorporate
information about power imbalance into this model. This model approaches human
performance in terms of F1 score by combining content with conversational context
and power imbalance.

6.5 Qualitative Analysis

This section examines specific messages where both players and machines are
correctly identifying lies and when they make mistakes on our test set. Most mes-
sages are correctly predicted by both the model and players (2055 of 2475 messages);
but this is because of the veracity effect. The picture is less rosy if we only look at
messages the sender marks as actual lie: both players and models are generally
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Model Model
Correct Wrong

Player Correct 10 32
Player Wrong 28 137

Table 6.5: Conditioning on only lies, most messages are now identified incorrectly
by both our best model (Context lstm + Power) and players.

wrong (Table 6.5).
Both models and players can detect lies when liars get into specifics. In Diplo-

macy, users must agree to help one another through orders that stipulate “I will help
another player move from X to Y”. The in-game term for this is “support”; half the
messages where players and computers correctly identify lies contain this word, but
it rarely occurs in the other quadrants.

Models seem to be better at not falling for vague excuses or fantastical promises
in the future. Players miss lies that promise long-term alliances, involve exten-
sive apologies, or attribute motivation as coming from other countries’ disinfor-
mation (Model Correct). Unlike our models, players have access to conversations
with other players and accordingly players can detect lies that can easily be verified
through conversations with other players (Player Correct).

However, ultimately most lies are believable and fool both models and play-
ers (Both Wrong). For example, all messages that contain the word “true” are
predicted as truthful by both models and players. Many of these messages are rel-
atively tame;9 confirming the Pinocchio effect found by Swol et al. (2012). If liars
can be detected when they wax prolix, perhaps the best way to avoid detection is
to be terse and to the point.

Sometimes additional contextual information helps models improve over player
predictions. For example, when France tells Austria “I am worried about a steam-
roller Russia Turkey alliance”, the message is incorrectly perceived as truthful by
both the player and the single-message model. However, once the model has context—
a preceding question asking if Austria and Turkey were cooperating—it can detect
the lie.

Finally, we investigate categories from the Harbingers (Niculae et al., 2015)
word lists. Lies are more likely to contain subjectivity and premises while true
messages include expansion phrases (“later”, “additionally”). We also use specific
words in the bag of words logistic regression model. The coefficient weights of words
that express sincerity (e.g., “sincerely”, “frankly”) and apology (e.g., “accusation”,
“fallout”, “alternatives”) skew toward actual lie prediction in the logistic regression
model. More laid back appellations (e.g., “dude”, “man”) skew towards truthfulness,
as do words associated with reconnaissance (e.g., “fyi”,“useful”, “information”) and
time (e.g., “weekend”, “morning”). Contested areas on the Diplomacy map, such

9Examples include “It’s true—[Budapest] back to [Rumania] and [Serbia] on to [Albania] could
position for more forward convoys without needing the rear fleet. . . ” and “idk if it’s true just
letting u know since were allies”.
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as Budapest and Sevastopol, are more likely to be associated with lies, while more
secure ones like Berlin, are more likely to be associated with truthful messages.

6.6 Related Work

Early computational deception work focuses on single utterances (Newman
et al., 2003), especially for product reviews (Ott et al., 2012). But deception is
intrinsically a discursive phenomenon and thus the context in which it appears is
essential. Our platform provides an opportunity to observe deception in the context
in which it arises: goal-oriented conversations around in-game objectives. Gathering
data through an interactive game has a cheaper per-lie cost than hiring workers to
write deceptive statements (Jurgens and Navigli, 2014).

Other conversational datasets are mostly based on games that involve decep-
tion including Werewolf (Girlea et al., 2016), Box of Lies (Soldner et al., 2019), and
tailor-made games (Ho et al., 2017). However, these games assign individuals roles
that they maintain throughout the game (i.e., in a role that is supposed to deceive
or in a role that is deceived). Thus, deception labels are coarse: an individual al-
ways lies or always tells the truth. In contrast, our platform better captures a more
multi-faceted reality about human nature: everyone can lie or be truthful with ev-
eryone else, and they use both strategically. Hence, players must think about every
player lying at any moment: “given the evidence, do I think this person is lying to
me now?”

Deception data with conversational labels is also available through interviews
(Pérez-Rosas et al., 2016), some of which allow for finer-grained deception spans (Lev-
itan et al., 2018). Compared with game-sourced data, however, interviews provide
shorter conversational context (often only a single exchange with a few follow-ups)
and lack a strategic incentive—individuals lie because they are instructed to do so,
not to strategically accomplish a larger goal. In Diplomacy, users have an intrinsic
motivation to lie; they have entertainment-based and financial motivations to win
the game. This leads to higher-quality, creative lies.

Real-world examples of lying include perjury (Louwerse et al., 2010), calumny
(Fornaciari and Poesio, 2013), emails from malicious hackers (Dhamija et al., 2006),
and surreptitious user recordings. But real-world data comes with real-world compli-
cations and privacy concerns. The artifice of Diplomacy allows us to gather pertinent
language data with minimal risk and to access both sides of deception: intention
and perception. Other avenues for less secure research include analyzing dating
profiles for accuracy in self-presentation (Toma and Hancock, 2012) and classifying
deceptive online spam (Ott et al., 2011).

6.7 Conclusion

In Dante’s Inferno, the ninth circle of Hell—a fate worse even than that re-
served for murderers—is for betrayers. Dante asks Count Ugolino to name his
betrayer, which leads him to say:

73



but if my words can be the seed to bear
the fruit of infamy for this betrayer
who feeds my hunger, then I shall speak—in tears (Alighieri and Musa,
1995, Canto XXXIII)

Similarly, we ask victims to expose their betrayers in the game of Diplomacy. The
seeds of players’ negotiations and deceit could, we hope, yield fruit to help others:
understanding multi-party negotiation and protecting Internet users.

While we ignore nuances of the game board to keep our work general, Diplo-
macy is also a rich, multi-agent strategic environment; (Paquette et al., 2019) ignore
Diplomacy’s rich language to build bots that only move pieces around the board.
An exciting synthesis would incorporate deception and language generation into
an agent’s policy; our data would help train such agents. Beyond playing against
humans, playing with a human in the loop (hitl) resembles designs for cyber-
security threats (Cranor, 2008), annotation (Branson et al., 2010), and language
alteration (Wallace et al., 2019b). Likewise, our lie-detection models can help a user
in the moment better decide whether they are being deceived (Lai et al., 2020).
Computers can meld their attention to detail and nigh infinite memory to humans’
grasp of social interactions and nuance to forge a more discerning player.

Beyond a silly board game, humans often need help verifying claims are true
when evaluating health information (Xie and Bugg, 2009), knowing when to take an
e-mail at face value (Jagatic et al., 2007), or evaluating breaking news (Hassan et al.,
2017). Building systems to help information consumers become more discerning and
suspicious in low-stakes settings like online Diplomacy are the seeds that will bear
the fruits of interfaces and machine learning tools necessary for a safer and more
robust Internet ecosystem.

In contrast to Chapter 3 and Chapter 4, this dataset is created exclusively
with expert users, in this case Diplomacy players. While there are quality differ-
ences even within a verified pool of community-of-interest, only one out of 80 users
did not actively participate in the experiment. In contrast over 10% of the data was
duplicated by crowd-sourced workers in Chapter 4. Additionally, we find the gener-
ated data to be thoughtful, clever, and sometimes even funny, which are adjectives
that seldom apply to large-scale nlp datasets. Both the generation and annotation
for this task would not be possible without experts.

In Chapter 7, we propose to create an expert-dependent task for another sub-
field of nlp, machine translation. In addition, we will see if a large crowd-sourced
dataset, WikiData, provides higher quality predictions than automatically created
embeddings for this task.
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Chapter 7: Proposed Work

Our past work has established that experts can solve tasks not possible by
generalists. We propose a new task where the gold standard is integral for evaluation,
thereby requiring experts. Machine translation usually translates words literally;
however, this does not necessarily apply in a cultural context. Certain Named
Entities may be relevant in one culture but not another. One can find applicable
Named Entity modulations by referencing WikiData, a human-interpretable and
human-verified representation of Wikipedia. We will want to investigate if this
method generates better candidates than an embedding-based approach, such as
word2vec. And a genuine evaluation of this approach requires specialized users,
specifically German nationals that would understand the language and culture.

7.1 Using Cultural Experts for Translation

Chapter 4 proposes a method to evaluate machine translation models and in
turn data. If we can establish that neural models are shallow in their understanding
of a task, we should be able to establish that current auto-generated or crowd-
sourced datasets are insufficient in quality. How then can we generate data at scale,
but with a level of reliability? Modulation is a task that combines our past work in
Question Answering, with our proposed work in Machine Translation and is a good,
difficult test-bed. This project posits two questions about experts. Can relying on
human-verified datasets, specifically WikiData, set a higher standard for machine
translation of question answering than is now possible? Additionally, how do you
verify that a generative task with many possible options is providing a reasonable
answer?

A challenge for modern data-hungry natural language processing (nlp) tech-
niques is to replicate the impressive results for standard English tasks and datasets
to other languages. Literally translating text into the target language is the most
obvious solution. This can be the best option for tasks such as sentiment analy-
sis (Araujo et al., 2016), but for other tasks such as question answering (qa), literal
translations might miss cultural nuance if you directly translate questions from En-
glish to German to provide additional training data. While this might allow qa
systems to answer questions about baseball and Tom Hanks in German, it does
not fulfill the promise of a smart assistant answering a culturally-situated question
about Oktoberfest.

This alternative is called cultural adaptation. If you put a German sentence
into a translation system, you might get literal, correct translation like “Mr. Müller
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grabbed a Berliner from Dietsch at the Hauptbahnhof before jumping on the ICE”.
The cultural context of Germany is necessary to understand this example.

An extreme adaptation could render the sentence as “Mr. Miller grabbed a
Boston Cream from the Dunkin’ Donuts in Grand Central before jumping on the
Acela”, elucidating that Müller literally means “Miller”, that Dietsch (like Dunkin’
Donuts) is a mid-range purveyor of baked goods, both Berliners and Boston Creams
are filled sweet pastries named after a city, and that the ICE is the (slightly) ritzier
inter-city train. Humans translators use this type of adaptation frequently when it
is appropriate to the translation.

Because adaptation is understudied, we leave the full translation task to future
work. Instead, we focus on the task of cultural adaptation of entities: given an entity
in English, what is the corresponding entity in a target language. For example, the
German Anthony Fauci is Christian Drosten. Can machines reliably find these
analogs with minimal supervision?

7.2 Was ist George Washington?

This section defines cultural adaptation and motivates it application for tasks
like creating culturally-centered training data for qa. Vinay and Darbelnet (1995)
define adaptation as translation in which the relationship, and not the literal mean-
ing, between the receiver and the content is recreated.

Work on analogy is close to our interest, but the standard analogy set-up
lacks the cross-cultural and cross-lingual dimensions (Turney, 2008; Gladkova et al.,
2016). Additionally, recent methods for identifying entities or cross-lingual trans-
lation could be repurposed for adaptation (Duh et al., 2011; Schnabel et al., 2015;
Kasai et al., 2019; Arora et al., 2019; Kim et al., 2019; Hangya and Fraser, 2019)

Adaptation is most applicable when machine translation is combined with
other tasks. Non-literal translation would be harmful for certain tasks such as the
information retrieval of news stories. In contrast, question answering is one domain
where adaptation seems crucial. There has been an explosion of English-language
qa data, but not in other languages. Several approaches try to transfer English’s
bounty to other languages. mlqa and xquad generate questions through machine
translation (Lewis et al., 2019; Artetxe et al., 2019). TyDi (Clark et al., 2020a) gives
users prompts from Wikipedia articles; other datasets like squad recapitulate the
problematic distribution of encyclopedias (Reagle and Rhue, 2011).

Most of the entities asked about in major qa datasets—SQuAD, TriviaQA,
Quizbowl—are American. The coverage of the question remains the same across
languages.

Given that we already have professionally-written questions, can
we adapt, rather than literally generate, them to another culture and
language?
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7.3 Adaptation from a Knowledge Base

We first adapt entities using a knowledge base. We use WikiData (Vrandečić
and Krötzsch, 2014), a structured, human-annotated representation of Wikipedia
that is actively developed. This resource is well-suited to the task, particularly as
features are standardized both within and across languages.

Many knowledge bases explicitly encode the nationality of individuals, places,
and creative works.1 Entities are represented in knowledge bases as discrete sparse
vectors, where most dimensions are unknown or not applicable (e.g., a building do
not have a spouse). For example, Angela Merkel is a human (instance of), German
(country of citizenship), politician (occupation), Rotarian (member of), Lutheran
(religion), 1.65 meters tall (height), and has a PhD (academic degree). How would
we find the “most similar” American adaptation to Angela Merkel? Intuitively, we
should find someone whose nationality is American.

Some issues immediately present themselves; contemporary entities will have
more non-zero entries than older entities. Some characteristics are more impor-
tant than others: matching unique attributes like “worked as journalist” is more
important than matching “is human”.

The items can be grouped by property and by value, the WikiData equivalent
of intents and slots. Properties in WikiData are the abstract intents: Merkel has
an “occupation”, a “academic degree”. Values are the slots: her “occupation” is
“politician”, her “academic degree” is a “doctorate”. The former works for macro-
entity classification since a building, a person and a song have different properties.
Additionally, more popular items have more properties. The latter are useful within
a culture as Merkel will belong to a value like the Christian Democratic Union,
unlike an American politician.

First, we bifurcate the WikiData into two sets: an American set A for items
which contain the value “United States of America” and a German set D for those
with German values.2 This is a liberal approximation, but it successfully excludes
roughly seven out of the eight million items in WikiData. Then we explore the
properties and the values from the WikiData. Properties are limited and centrally
organized. Values are more numerous and varying in quality. We select the highest
frequency features.3 Values exist in all types of dimensions and the structure of Wiki-
Data is occasionally inconsistent. For example, you will not find Goethe under any
expected variations of Germany; he is only annotated under Saxe-Weimar-Eisenach.
Including additional values does not lead to qualitatively better predictions with
20,000 values than with 1,000 values. We use properties for our final results.

1Like with language, nationality is often correlated with culture, but is not synonymous. Large
countries contain multitudes, while some nationalities (e.g., Kurds) lack a de jure nation but span
many nations. We elide this detail and focus on information often available in knowledge bases.

2While the geopolitical definition of American is straightforward, the German nation state is
more nuanced (Schulze, 1991). Following Green (2003), we adopt members of the Zollverein or the
German Confederation as “German” as well as their prececessor and sucessor states.

3Including a maximum and a minimum cap did not obviously generate better candidates than
the most frequent items
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The properties are discrete and categorical; Merkel either has an “occupation”
or she does not. Each entity then has a sparse vector. We calculate the similarity of
the vectors with Faiss’s (Johnson et al., 2017) L2 distance. Specifically, we search
for each of the source German adaptation entities in the pre-selected 1,000,000 item
American matrix. Conversely we search for each of the American entities in the pre-
selected 180,000 item German matrix. This division is crucial as the most similar
candidates are from the same cultural background.

Formally we calculate the vector as:

d′ = argmin
a∈A

‖a− d‖2 (7.1)

where d′ is the optimal German vector and a ∈ A are the items in the American
matrix.

For both WikiData and the embedding-based approach, we select 100 candi-
dates per item.

So who is the American Angela Merkel? One possible answer is Woodrow
Wilson, a blue-eyed protestant who had a PhD, served as head of state, and was
also nominated for a Nobel Peace Prize. This answer may be unsatisfying as it was
Barack Obama who sat across from Merkel for nearly a decade. To capture these
more nuanced similarities, we turn to large text corpora in Section ??.

While the classic nlp vector example (Mikolov et al., 2013c) isn’t as magical
as initially claimed (Rogers et al., 2017), it provides useful intuition. We can use
the intuitions of the cliché:

−−→
King−

−−→
Man+

−−−−−→
Woman =

−−−−→
Queen (7.2)

to adapt between languages. We follow the word analogy approach of 3CosAdd (Levy
and Goldberg, 2014; Köper et al., 2016) to adapt the source word by solving:

x−
−−−−−−→
American+

−−−−−→
German =

−−−−→
Merkel (7.3)

to find the closest entity, Obama, to x.4
Towards this end, we will need to create relevant embeddings. First, we use

Wikipedia dumps in the English and German language, processed using Moses’
preprocessing pipeline (Koehn et al., 2007). However, by default, the dumps are
separated as unigrams, whereas Named Entities such as people are often phrases.
We follow Mikolov et al. (2013b) and use co-occurrence statistics to build bigrams
and trigrams, limiting the vocabulary to the 1M most frequent tokens. We use
word2vec (Mikolov et al., 2013b), rather than FastText (Bojanowski et al., 2016), as
we do not want orthography to influence the similarity of entities. Merkel in English
and in German have quite different neighbors, and we intend to keep it that way.

However, the standard word2vec model assumes a single monolingual embed-
ding space. To align the two monolingual spaces we use unsupervised Vecmap (Artetxe
et al., 2018), a leading tool for cross-lingual word embeddings. American→German

4We experimented with 3CosMul as well but found 3CosAdd generally more robust.
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can be thought of as representing the source embedding in the American space and
the target embedding in the German space. Hence, the source (American) becomes
x in this equation, meaning that x-a+b represents its adapted vector and the closest
target words (German) based on cosine similarity its word adaptations. a and b rep-
resent the American and German culture and are used as anchors for the adaptation.
We average the vector of United States in the English space and that of USA in the
German space for robustness. Similarly we average Germany and Deutschland for
vector b. In standard analogy the a and b vectors are different for each test pair.
In our case, the vectors are the same because the relation is identical for each x -y
pair.

Summarizing, we take the German (or American) embedding of the Named
Entity, adapt it with 3CosAdd and look for the most similar words to the adapted
embeddings in the American (or German) model. In the case where the phrase is
not found as an embedding, we back off to the last name of the named entity (e.g.,
Barack Obama → Obama).

7.4 Evaluation by Experts

The difficulty of the task merits skilled users. Since quality control is difficult
for generation (Peskov et al., 2019), we need users who will answer the task accu-
rately and without annotation artifacts. We select five American citizens educated
at American universities and five German citizens educated at German university.
These human annotations serve as a gold standard against which we can compare
our automated approaches. To improve the user experience, we create a custom
interface that:

1. describes the task and provides examples
2. tracks the user inputting the annotation
3. provides a brief summary from Wikipedia
4. pre-populates from an autocomplete box a la answer selection in Wallace et al.

(2019c)

The annotation task requires roughly two hours for our users to complete. Our
entities come from two sources: the top 500 most visited Wikipedia pages and the
Veale NOC List (Veale, 2016). Wikipedia has a heavy skew towards pop culture;
the top 500 pages had to be preemptively filtered to avoid being dependent on pop
music and films. The Veale NOC list is human-verified and contains a historically
broader sweep of people. We conduct this exercise in both directions; while Berlin
is the German Washington, DC, there is less consensus on what is the American
Berlin, as Berlin is both the capital, a tech hub, and a film hub. A full list of our
items and their suggested adaptations are in the Appendix. We expect this dataset
to show how prototypical particular examples are within a culture.
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7.4.1 Summary
We propose entity adaptation as a task. Word2vec embeddings and WikiData

can be used to figuratively—not just literally—translate entities into a different cul-
ture. We are interested in knowing if both methods generate reasonable candidates.
WikiData is largely human-verified and will test if crowd-sourced information is
more similar to expert decision-making than automatic embeddings. Additionally,
we will see how interpretable our predictions are. For our experiments we will create
and release the first adaptation dataset for which citizens of the respective countries
provide annotations for popular items from English and German Wikipedia, and a
part of the Veale Non-Official Characterization list.
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Chapter 8: Conclusion

In this proposal, we have covered past work that creates datasets using three
types of data pools: unspecialized, hybrid, and expert. We argue that improving
data quality with reliable data generators and annotators is paramount towards
establishing new nlp tasks. We propose a new task, cultural adaptation, that both
passively evaluates a crowd-sourced data source, WikiData, while using verified
cultural experts to create the gold standard.

8.1 Timeline

• Late January/Early February Thesis Proposal

• February 2021 Modulation Paper Updates

• June 2021 Modulation Paper presented at NAACL

• January till June 2021 Assistance with other projects on Question Answer-
ing and Diplomacy

• August 2021 Thesis Defense

• September 2021 Transition to academic postdoc
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