
Chapter 1: See previous updates

Chapter 2: Natural Language Processing Depends on Data

In this chapter, we discuss the history of nlp, the nlp tasks relevant for our

work, and the three types of data collection discussed in this proposal.

The history of nlp outlined in Section 2.1 explains the current dependence

on data. Developments in the fields of statistics and linguistics led to the use of

raw training data for building of language models. But each nlp task requires its

own bespoke training data, such as parallel training data for machine translation.

Specifically, we discuss relevant past work for question answering, dialogue, and

machine translation in Section 2.2 as background for our research. Certain tasks

for these subfields are unable to be solved with naturally-found data and require

dataset creation.

Different types of users can generate and annotate the data needed for

these language models. Unspecialized users can be asked to solve tasks through

crowd-sourcing and automated methods can be used to generate data at scale
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(Section 2.3.3). Data can be gathered and annotated exclusively using experts

(Section 2.3.4). Last, hybrid approaches combine anonymous crowd users with

experts that verify the results (Section 2.3.5). We provide the necessary background

and past work relevant to these three data pools in (Section 2.3). We explain the

models and metrics that are used in solving these tasks (Section 2.4).

2.1 How Language Models Begot Training Data

Our understanding of language has been quantified through formalizing tasks

that provide evidence for a theory. These include the Shannon game (Shannon

et al., 1949) and the Turing Test (Turing, 1950). nlp continues to explore language

through the introduction of new tasks, such as question answering, machine trans-

lation, and dialog. Each of these tasks is “solved” through the construction of a

system. However, building this system and then evaluating it depends on data.

A statistical approach to language—a departure from the linguistics paradigm—

brought forth Natural Language Processing.1 Performing language tasks with sim-

plified rules and limited vocabulary was the paradigm for linguistics (Wittgenstein,

1953; Berko, 1958). Linguistics developed a statistical slant in the 20th century with

the insights of J.R. Firth, who declared that, “you shall know a word by the company
1The development of the computer and the nearly immediate connection to human language is

the other major half. Alan Turing proposed the Turing Test to evaluate if a machine can converse

in a manner indistinguishable from a human (Turing, 1950). The test explores if the variance

among humans is large enough for a clever computer to fool a human judge. Obviously one cannot

have a conversation with a machine in the first place without nlp!
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it keeps” (Firth, 1957). This insight serves as the foundation of embedding-based

representations of language in modern-day nlp.

The language model has created the dependence on training data, with which

this proposal is concerned. Statistical language modeling evolved over the 20th

century from the Markov chain (Markov, 1906; Shannon, 1948; Rosenfeld, 2000)

and has slowly taken over linguistic journals as the dominant approach for solving

language tasks. The co-occurrence of words in the form of a n-gram model became

the paradigm.

p(wi|hi) = p(wi |wi−n+1, . . . , wi−i) (2.1)

where wi is the ith word in a sentence and hi is the history of words that came

before. Furthermore, this method can be applied to any symbols, and not just

language, which has made nlp methods useful for fields like biology.

This type of language model is entirely dependent on training data due to its

lack of any constructed rules or linguistic knowledge. A language model trained

on inaccurate and nonsensical language data will confidently predict nonsense, as it

has no understanding of rules, grammar, or language. A machine has no intrinsic

understanding of what is signal and what is noise, and it is up to the intrepid

scientist to specify how a snippet of language should be correctly understood by

the machine. The probability of “computer science” occurring more often than

“computer aardvark” in a language model is subject entirely to the training data

rather than any ontological or linguistic truth. This is a key insight of information

theory (Shannon et al., 1949), which reduces linguistic information to a numerical
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representation. Information theory is a logical successor to Zipf’s Law (Zipf, 1935),

which identifies that there is a strong relationship between the rank of a word and

its frequency: the first-order word occurs notably more often than the second-order

word, the second-order word occurs more often than the third-order word, and so on.

This statistical distribution of language is necessary for machine learning to work

and this insight applies not only to words, but to phrases (Williams et al., 2015),

language learning (Powers, 1998), and many non-nlp phenomena such as website

usage (Jiang et al., 2013).

The most obvious option for training this language model is to use easily-

found, naturally-occurring data. The development of the Internet in particular led

to an explosion of available textual data for language models. The amount of data

created from 2010 to 2017 has increased 13-fold.2 The latest raw text models are

trained on de facto the entire Internet (Brown et al., 2020). There is a limit to how

much a language model can learn from statistics without understanding language,

but that limit has not yet been ascertained.

2.2 Tasks

Language models can be created for different nlp tasks, but each requires a

different type of training data. For example, machine translation requires parallel

text, which increases the standard for training data quality. We focus on three nlp

tasks in our research: Machine Translation, Question Answering, and Dialogs.
2https://www.statista.com/statistics/871513/worldwide-data-created/
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2.2.1 Machine Translation

Machine translation needs text from multiple languages, which requires par-

allel texts across languages. We discuss several key datasets in the area.

Machine translation as a nlp task only dates back half a century. Yet it has

already undergone dramatic changes in methodology. The Georgetown Machine

Translation experiments translated dozens of sentences from Russian into English

in 1954 (Hutchins, 2004). The system used a rules-based approach that encoded

grammar and lexical endings to convert the input sentence to the target language.

This proof of concept began a decade of research into the topic, until a realistic

assessment of results concluded that machine translation could not be solved in

several years, as initially presumed.

The rise of statistical machine translation began with the recognition that

parallel French-English text from the Canadian parliament could be used to train

more flexible models than previously possible (Berger et al., 1994). Thinking of

languages as a noisy channel model—English is a garbled version of French—allowed

researchers to align parallel corporate and learn how language can be automatically

translated. The equation is:

ê = argmax
e

p(e | f) (2.2)

where e is the English sentence and f is the French sentence. Hence, p(e | f) calcu-

lates the highest corresponding English sentence for the French one. This has the

same intuition as Equation 2.1, since an existing word predicts an unseen word.
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Since this development, parallel corpora have been sought after in every con-

ceivable domain. The Bible, books, medical records, and the Internet predate nlp.

The Bible (Resnik et al., 1999) is a prime example of a existing corpus that can pro-

vide parallel data for “2000 tongues”.3 Literature and movie captions (Varga et al.,

2007), librettos (Dürr, 2005), medical information (Deléger et al., 2009), and the

Internet (Resnik and Smith, 2003; Smith et al., 2013) can all be sources of parallel

data. The independent growth of these corpora will provide language models with

found data, which can be used for training supervision.

Data generation has become necessary for this subfield given the large amount

of data required, and all the possible languages to cover. The Workshop on Machine

Translation facilitates model-building for machine translation (Koehn and Monz,

2006), which would be impossible without standardized datasets for the commu-

nity collaboration. Statistical Machine Translation has been supplanted by neural

machine translation (nmt) (Wu et al., 2016). Chapter ?? evaluates limitations of

nmt for coreference resolution (Soon et al., 2001), the task of disambiguating the

appropriate pronoun for each named entity. Our research introduces a new ma-

chine translation task, cultural adaptation (Chapter ??), that requires collecting

translations from cultural experts for gold standard evaluation.

Machine translation can be used for downstream tasks, such as question an-

swering. At a linguistic level, pronouns must be resolved in multiple languages (Müller

et al., 2018) to answer a question. But entire questions are desirable for machine

learning, and choosing how to translate entire sentences is nontrivial. mlqa and
3In this case, only for a dozen tongues.
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Dataset # of Sentences Data Source

ContraPro 12,000 Found

Canadian Parliament 1,300,000 Found

EuroParl 11,000,000 Found

TyDi 204,000 Crowd

XQuAD 1,190 Expert

MLAQ 12,000 Hybrid

Table 2.1: A tabular summary of machine translation datasets.

xquad automatically generate paired questions through machine translation (Lewis

et al., 2019; Artetxe et al., 2019). As an alternative, TyDi (Clark et al., 2020a) gives

crowd-sourced users prompts from Wikipedia articles to create questions in a wide

range of languages. The following section discusses question answering, indepen-

dently of machine translation.

2.2.2 Question Answering

Question answering (qa) is another task heavily dependent on training data.

In the current machine learning paradigm, qa can only answer a question with a

previously seen answer. Therefore, the coverage of questions and answers is impor-

tant as models trained on trivia questions cannot answer inquiries about medical

symptoms, and vice versa. We discuss the relevant history of question answering

and review the most relevant datasets.
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Questions

What is the English meaning of caliente?

What is the meaning of caliente (in English)?

What is the English translation for the word “caliente”?

Table 2.2: Three questions from trec 2000 data that are believably varied. The

test questions were carefully crafted by experts.

Questions Answers

“Which laws faced significant opposition?” later laws

“What was the name of the 1937 treaty?” Bald Eagle Protection Act

Table 2.3: The paper examples from squad. Unlike Table 2.2, these questions are

done through crowd-sourcing and Wikipedia and are not carefully planned.

The Text Retrieval Conference established qa as an annual, formalized task (Voorhees

et al., 1999). The questions were carefully curated every year and modifications to

the question answering task were made. Table 2.2 shows examples of questions that

are intended to fool systems reliant on literal information extraction.

The neural era ushered in larger more diverse qa datasets, with squad (Ra-

jpurkar et al., 2016, 2018) being the most popular leaderboard for models. The

amount of questions went from being measured in the hundreds to being measured

in the hundreds of thousands. Example questions are provided in Table 2.3. Large

influential question answering datasets include squad 1.0 (Rajpurkar et al., 2016),

squad 2.0 (Rajpurkar et al., 2018), MS Marco (Bajaj et al., 2016), TriviaQA (Joshi
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et al., 2017) quac (Choi et al., 2018), Quizbowl (Rodriguez et al., 2019), and Nat-

ural Questions (Kwiatkowski et al., 2019). We summarize the size of these datasets

and their user pools in Table 2.5.

Computers can read a question and select the answer from a passage of text.

This format of qa is called machine reading comprehension (Rajpurkar et al., 2016,

mrc), and has been a popular choice for dataset design. However, qa models strug-

gle to generalize when questions do not look like the standalone questions systems

in training data: e.g., new genres, languages, or closely-related tasks (Yogatama

et al., 2019). Unlike mrc, conversational question answering requires models

to link questions together to resolve the conversational dependencies between them:

each question needs to be understood in the conversation context. For example,

the question “What was he like in that episode?” cannot be understood without

knowing what “he” and “that episode” refer to, which can be resolved using the con-

versation context. CoQA creates conversational question answering around different

domains–Wikipedia, children’s stories, News Articles, Reddit,literature, and science

articles–by pairing Mechanical Turk crowd-sourced workers together (Reddy et al.,

2019).

Recent work acknowledges that certain community practices, such as crowd-

sourcing for questions, may not be optimal for qa. Wallace et al. (2019) work with

the Quizbowl community to rewrite questions be adversarial. Clark et al. (2020b)

emphasize that natural speakers of a language must be used to write authentic ques-

tions in languages outside of English, although the source of theses speakers is still

crowd-sourced unverified users as they do not have other scalable access to speak-
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Dataset # of Questions Data Source

CoQA 8,000 Crowd

squad 1.0 100k Crowd

squad 2.0 50k Crowd

quac 100k Crowd

TriviaQA 95k Hybrid

Quizbowl 100k Hybrid

Natural Questions 300k Hybrid

MS Marco 1000k Found

trec-8 200 Expert

Trick Me 651 Expert

Table 2.4: A tabular summary of dialog datasets. The datasets described as hybrid

all scrape or use naturally-occurring language and then supplement it with crowd-

sourced annotation.
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ers of typologically diverse languages. Boyd-Graber (2020) questions the paradigm

of using crowd-sourced workers as the measure for human baselines, rather than

evaluating through a play test. Rodriguez et al. (2021) questions the paradigm of

using quantitative leaderboards, given the disparity of question difficulties. van der

Goot (2021) questions the paradigm of using a development set for model tuning.

Kummerfeld (2021) questions the qualification requirements for Mechanical Turk

workers. Last, Karpinska et al. (2021) questions the output of Mechanical Turk

workers for evaluation.

2.2.3 Dialogs

Existing found conversational data has been repurposed as nlp datasets.

Ubuntu threads provide millions of conversations of technical support (Lowe et al.,

2015). Reddit, a collection of threaded comments about diverse subjects, and Open-

Subtitles, collections of movie and television subtitles, provide millions of sentences

as training data (Henderson et al., 2019).

However, found datasets cannot cover all domains and languages. There-

fore, generating conversational datasets becomes a nlp need. The Dialog State

Tracking Challenge (Henderson et al., 2014) formalizes the dialog task on an an-

nual basis and creates several relatively-small, crowd-sourced datasets focusing on

different conversational tasks. MultiWOZ proposes a framework for simulated con-

versations, which is necessary for domains containing sensitive data that cannot be

released (Budzianowski et al., 2018).
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Dataset # of Questions Data Source

DSTC2 1,612 Found

Ubuntu Dialog 930,000 Found

Reddit 256,000,000 Found

OpenSubtitles 316,000,000 Found

DSTC2 1,612 Crowd

CoQA 8,000 Crowd

MultiWOZ 8,438 Crowd

Table 2.5: A tabular summary of key dialog datasets.

2.3 Data Collection Type

Data for machine learning can come from one of four sources: automation,

crowd-sourcing, experts, and a hybrid mix of the crowd with experts. We discuss

the seminal work for each of these data pools.

2.3.1 Finding

Reusing existing text through scraping websites or forums and re-purposing

historical documents can create datasets with little effort. We define the this type

of data as found.

The Internet contains information varying in quality. Amazon reviews (McAuley

et al., 2015), Twitter (Banda et al., 2020), and Wikipedia (Vrandečić and Krötzsch,

2014) provide language from unverified users on the Internet. These datasets are
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large, but contain noise due to having a low barrier to entry for contributors.

Higher quality datasets often come from organizations that have an incentive

to control or report their data. Enron emails are original emails collected into a

dataset (Klimt and Yang, 2004). EuroParl is collected from professionally translated

official parliamentary proceedings (Koehn, 2005). Literature comes from a verified

author (Iyyer et al., 2016), as does journalism (Lewis et al., 2004). The United

Nations maintains detailed datasets about global populations. The World Trade

Organization releases a comprehensive collection of legal disputes.

The original source of this type data can be experts (e.g., World Trade Orga-

nization lawyers and translators) or they can be unverified online users (e.g., Reddit

users). Since this data was not intentionally intended for nlp, annotation is often

required. Additionally, found data can be created by experts or unverified general-

ists, depending on the task and the desired quality.

2.3.2 Automation

Data generation is necessary as the data necessary for nlp cannot always be

found. Synthetic data can be created according to fixed rules or templates, which we

refer to as automation. Augmentation is a frequent phrasing of this way of creating

data (Kafle et al., 2017). This method can create datasets of any scale, but it does

not guarantee their authenticity.

Templates can be used to create datasets unlimited in scale, but dubious in

realism. Filatova et al. (2006) generate questions using specific verbs for various
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domains: airplane crashes, earthquakes, presidential elections, terrorist attacks. In

their own words, their automatically created templates are “not easily readable by

human annotators” and the evaluation requires a lengthy discussion. Examples of

questions generated though templates include the following nonsensical questions

about specific earthquakes:

• Is it near a fault line?

• Is it near volcanoes?

Chapter ?? describes our project in which text-to-speech creates a dataset of

500,000 audio files. While large, our dataset is limited to a single female voice and

read in a notably different cadence than that of realistic Quizbowl experts. Addi-

tionally, our automation method depends on the existence expert-written questions

in the first place. However, to create a dataset of the same size with human experts

would require thousands of hours. Mozafari et al. (2014) propose using active learn-

ing to minimize the human effort needed to gather large-scale datasets; one gathers

annotations for a subset of the data and then extrapolates those labels to similar

unlabeled data. This serves as a segue into the next type of data creation method:

crowd-sourcing.

2.3.3 Crowd-Sourcing

We define crowd-sourcing and automatic data generation techniques, explain

their history, and comment on the repercussions of the wide-spread use of this

data pool in nlp today. Crowd-sourcing is “the practice of obtaining needed ser-
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vices, ideas, or content by soliciting contributions from a large group of people and

especially from the online community rather than from traditional employees or

suppliers” (Merriam-Webster). Crowd-sourcing, in the applied sense, relies on un-

specialized users and is the most popular way to create new datasets in nlp today.

The reliance on crowd-sourcing low-cost labor is a phenomenon just over a

decade old. Deng et al. (2009) build ImageNet using Mechanical Turk—a crowd-

sourcing marketplace that makes it easier for individuals and businesses to outsource

their processes and jobs to a distributed workforce who can complete these tasks

virtually (Amazon, 2021)— crowd-sourcing for annotating WordNet with images,

which ushered in this paradigm. Visual classification tasks are maximally simple

in nature since annotators are asked to decide if an image contains a Burmese cat.

Figure 2.1 shows their interface. Despite this, disagreement is a major problem and

a minimum of 10 users are used to guarantee a level of confidence. Even with con-

stant updates, the dataset still has limitations a decade later from the initial scaling

methodology used to create it (Yang et al., 2020).

Crowd-sourcing spread to other disciplines other than machine vision as a

source for research data. Buhrmester et al. (2011) claim that Amazon Mechanical

Turk gathers “high-quality data inexpensively and rapidly” for psychology. The

average psychology experiment is conducted using university students that require

hourly compensation and usually come from a concentrated geographic area and

socio-economic background. However, the evidence for this claim stems from having

participants fill out a survey and is primarily evaluated on the time required, rather

than the quality of the final result. In their survey, users report that their motivation
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Figure 2.1: Deng et al. (2009) pioneers Mechanical Turk use for Computer Science.

Simple annotation tasks can be completed reliably with crowd-sourcing since se-

lecting if an image belongs to a WordNet category (e.g., car, bicycle, delta) is a

relatively objective and straightforward task. However, many nlp tasks are not so

clear-cut.

for using Mechanical Turk is higher on a Likert scale for enjoyment than for payment.

Given that nearly every nlp task requires that users complete a large amount of

previous tasks (1000+) and with a nearly perfect accuracy (90%+), this claim seems

unlikely to hold for the average producer of nlp data. As a note of caution, Mason

and Suri (2012) claim that spammers are likely to target surveys on Mechanical

Turk.

Crowd Flower, renamed as Figure Eight, is a platform similar to Mechanical

Turk, but with a focus on quality control. While Mechanical Turk keeps track of

Human Intelligence Tasks (hit)—the name for each individual task—accuracy
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rates, this metric depends on task providers to manually evaluate the data and

provide feedback about the worker. This level of oversight is unlikely to occur

for thousands of tasks. Crowd Flower’s innovation is to include a test set with

each task which monitors that users’ responses correspond to gold labels. As early

adopters of crowd-sourcing, Finin et al. (2010) use Crowd Flower for annotating

named entities in Twitter. However, most annotations are completed by a few prolific

workers, which opens up the dataset to potential biases. Furthermore, creating a

crowd-sourced dataset with Crowd Flower is possible for annotation but not for

generation.

From computer vision annotation, crowd-sourcing transferred over to natural

language processing (Callison-Burch et al., 2015). Snow et al. (2008) posit that

(on average) four non-expert workers can emulate an expert for five nlp tasks:

affect recognition, word similarity, textual entailment, temporal event recognition,

and word sense disambiguation. Using a nonprofessional user pool is the default

manner for collecting large datasets for nlp as it can generated and annotated

quickly and cheaply. As on example, large question answering datasets involving

Wikipedia and search engines—squad, SearchQA—use crowd-sourcing to generate

questions (Rajpurkar et al., 2016; Dunn et al., 2017).

The two main benefits to this data source are the cost and the rapid rate of

data collection. The cost is unquestionably lower for an employer or researcher to

use the crowd rather than internal employees. Crowd workers are paid a fraction

of what full-time employees would receive for the same task and do not receive
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any benefits (Whiting et al., 2019).4 Largely due to the variations in cost-of-living

around the world and flexibility of the work, the pay is appealing to some workers.

The demographics of the platform more accurately model the United States than

the average college student, at least for psychology experiments (Buhrmester et al.,

2011). As a result, Amazon Mechanical Turk has over a hundred-thousand workers,

thousands of which are available at any moment (Difallah et al., 2018). Modu-

lar tasks can be completed in hours in crowd-sourcing, as thousands of temporary

workers complete tasks faster than a handful of employees.

The con to crowd-sourcing is that quality control becomes the central chal-

lenge for crowd-sourcing nlp data. Zaidan and Callison-Burch (2011) show that

data gathered from crowd-sourcing for machine translation nets a bleu score nearly

half the size of professional translators, and only one point higher than an auto-

matic machine translation approach. Other studies have shown that users tend to

voluntarily provide inaccurate data (Suri et al., 2011) and misrepresent their back-

ground (Chandler and Paolacci, 2017; Sharpe Wessling et al., 2017). Last, there

is an upper-bound to the complexity of crowd-sourced tasks. Crowd workers have

been shown to become less reliable and efficient for tasks that are not straight-

forward (Finnerty et al., 2013). Figure 2.2 shows that more complicated nlp task

instructions are not followed in good faith. For classification tasks, average accuracy

needs to exceed 50% for reliable annotators to overcome their noisy peers (Kumar

and Lease, 2011). Given that certain tasks are highly sparse, this is not a threshold

that is always achievable. As a tangential consideration, legal regulation may ulti-
4This clearly is not a pro from the worker’s perspective.
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mately limit the effectiveness of this technique, since it is completely unregulated

by current employment practices (Wolfson and Lease, 2011).

Chapter ?? reveals quality issues in this technique through a project that

crowd-sources question. We use Mechanical Turk’s crowd to rewrite sequential ques-

tions into a standalone format. However, extensive manual review is necessary to

remove the low-quality contributions from the data pool. Experts are accountable

in ways the crowd-user is not and do not require the same level of post-collection

quality control.

2.3.4 Expert

We define “experts”, provide a brief summary of relevant datasets, and intro-

duce a dataset generated and annotated by domain experts. An “expert” is:

“a person with a high level of knowledge or skill relating to a particular

subject or activity.” The Cambridge Dictionary

Defining expertise is a tricky and subjective goal; for example, “high level” is

highly subjective in this definition. Bourne et al. (2014) conclude that psychology

is the appropriate framework for evaluating expertise, which “results from practice

and experience, built on a foundation of talent, or innate ability”. For nlp, we

require that the person has both the incentive and skill to accurately, as opposed to

quickly, complete their task. A degree of accountability, rather than full anonymity,

is important as it prevents intentional fraud (Teitcher et al., 2015). Therefore,

we require that experts be identifiable, in at least some capacity during the data
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collection process. Such experts can be trained or they can be found in specialized

communities of interest. The amount of expert-only datasets for nlp are limited due

to the high cost associated with hiring experts and quality assurance. Alternatively,

skilled citizen scientists may generate high-quality language in the pursuit of a hobby

such as journalism, writing, or debate. Given the increasing investment and interest

in the field, this route for data collection will be the best long-term investment. We

discuss existing sources of this kind of data, methods for generating language data,

and methods for annotating language data.

Language recorded naturally for other purposes has led to datasets that have

withstood the test of time. The United Nations, New York City, and the World

Trade Organization are all organizations that release reliable large-scale data, as

discussed in Section 2.3.1. These organizations hire professionals such as translators

and lawyers to generate language.

However, existing, or found, data sources do not cover all nlp tasks and do-

mains. Therefore, generation by experts is necessary. The best example of this in

nlp is WordNet, which was built in the 1980s. The ontology was carefully crafted us-

ing a small batch of Princeton psychology graduate students—arguably some of the

best experts in the English language and unarguably participants with a strong in-

centive to provide meaningful data—over an extended period of time (Miller, 1995).

Annotations are possible to collect from non-experts, but often at the expense

of their accuracy. Programmers can self-annotate their code for easier future ac-

cessibility (Shira and Lease, 2010). Hate speech annotation is more accurate with

expert annotators than amateur ones (Waseem, 2016). In the medical field, the
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lack of expert annotation poses a barrier to large-scale nlp clinical solutions (Chap-

man et al., 2011). Unsurprisingly, doctor annotation is more accurate than online

generalist annotation for medical diagnoses (Cheng et al., 2015).

Multiple studies comparing the quality of crowd-sourced work and expert work

have been done. Mollick and Nanda (2016) compare expert to crowd judgment for

the funding of theater productions. They conclude that most decisions are aligned

between the two pools, but that crowds are more swayed by superficial presentation

than underlying quality. Leroy and Endicott (2012) compare annotations of text

difficulty between a medical librarian and a non-expert user and do not see a large

difference on a small sample size.

Chapter ?? presents a project that works with the Diplomacy, a popular board-

game, community to generate and annotate a natural conversational dataset for

the task of deception. The language in this dataset is realistic and impossible to

generate with unspecialized crowd users. An example conversation is provided in

Table 2.6.

2.3.5 Hybrid

Hybrid approaches aim to enhance crowd-sourcing by overseeing unspecialized

labor or automatic methods with expert knowledge. This combination lowers cost

and allows for data scaling, while maintaining a certain level of quality control. We

define hybrid user pools and discuss past projects.

We define hybrid data collection sources as any that combine a cost-saving
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pool, such as crowd-sourcing or automation, with expert supervision. This is a

natural extension of crowd-sourcing and does not require as detailed of a historical

overview: once quality issues were noted, attempts were made to remedy them.

For generation, crowd-sourced workers can be combined with trained agents to

create data for a given nlp task. For annotation, crowd-sourced workers can be

supervised by trained experts.

As an illustrative example, Zaidan and Callison-Burch (2011) propose an

oracle-based approach to identify the high quality crowd-sourced workers and rely

on their judgments. The paper claims that crowd-sourcing can lead to a notable re-

duction in cost without a complete loss in quality. Their approach crucially depends

on having expert (professional) translations as a reference point.

Numerous other approaches have proven successful for a myriad of tasks.

Kochhar et al. (2010) use a hierarchical system for database, specifically Freebase,

slot filling. First, an item is populated by automatic methods, then issues are esca-

lated to volunteer users, and any remaining issues are escalated to trained experts.

Ade-Ibijola et al. (2012) design a system for essay-grading that allows for teacher

oversight and compare their results to area experts. Hong et al. (2018) optimize the

productivity of medical field experts by providing additional reference resources and

standardizing databases. fever (Thorne et al., 2018) relies on super-annotators on

one percent of the data as a comparison point for all other annotations for fever.

Errors made by crowd-sourced workers on Named Entity Recognition can be clus-

tered and identified, which in turn can be escalated to a skilled arbitrator to improve

task guidance (Nguyen et al., 2019). Having an expert-written template that crowd
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workers must follow eliminates the worst-quality submissions (Budzianowski et al.,

2018). This example is provided in Figure 2.3. Combining trained and untrained

workers can be used for generating Wizard-of-Oz personal assistant dialogs (Byrne

et al., 2019).

Furthermore, there are two crowd-sourcing platforms whose business model re-

lies on this hybrid approach. Crowd Flower, mentioned in Section 2.3.3, attempts to

booster the reliability the crowd by requiring the task master to create gold-standard

test questions, which are interspersed among the data being collected (Vakharia and

Lease). While not necessarily using experts, this provides an automatic quality fil-

ter that down-weights the reliability of annotations made by the least accurate–as

determined by the gold-standard test set—annotators. Crucially, this approach can

only work for annotation, as generation quality cannot be quickly assessed. ODesk

is a crowd-sourcing platform that provides a hybrid approach, as it relies on crowd-

sourcing from the Internet, but vets the participants to have a matching skill-set for

the task (Vakharia and Lease).

2.4 Models & Metrics

Data does not exist in a vacuum and tasks cannot be solved without a for-

malization. Therefore, we summarize popular models used with the data to solve

machine translation, question answering, and dialog. Additionally, we discuss the

metrics used to evaluate these models. This emphasis on model, and not data,

evaluation is a key limitation in nlp.
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2.4.1 Logistic Regression

According to Ng and Jordan (2002), the logistic regression is a basic dis-

criminative model, meaning that it can classify items into one of several classes. It

relies on using features x to predict class y by learning a vector of weights, ~w, and

a bias term, b according to:

z = ~w · ~x+ b (2.3)

The variable z is then passed through a sigmoid function to transform the values to

a probability:

y = σ(z) =
1

(1 + e−z)
(2.4)

There are two phases to logistic regression: training and test. During training,

stochastic gradient descent and cross-entropy loss learn the optimal weights of ~w and

b. Cross-entropy loss calculates the difference between the predicted ŷ and the true

y. The gradient descent algorithm (Bottou, 2010; Ruder, 2016) finds the minimum

loss.

At test time, for each example the highest probability label is predicted in y.

Multinomial logistic regression allows for the prediction of more than two classes.

Other important parts of logistic regression, and machine learning more broadly,

are batching—calculating gradient across multiple examples at once to have a bet-

ter estimate in which direction to adjust weights—and regularization (Tibshirani,

1996)—penalizing large weights in the function to generalize results from the train-

ing data to unseen data.
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The logistic regression model is interpretable since the weight of each feature is

transparent in the final prediction. Certain features have higher weights than other

ones. A feature weight of close to zero would indicate that the feature is not essential

for the model; conversely the highest weighted feature is important in the task. This

has made the logistic regression a popular baseline model for machine learning. Its

interpretability with the current state-of-the-art model: neural networks.

2.4.2 Neural Models

Neural networks are a more powerful classifier than logistic regressions and can

be shown to learn any function due to a hidden layer. Additionally, they often avoid

dependence on carefully crafted features and learn their own representations for the

task (Jurafsky and Martin, 2000). Further research into deep learning created deeper

and computationally more expensive neural networks, specifically for machine vision.

From there, the application of neural networks branched out into other domains,

including nlp.

Neural networks are an old idea that gained widespread adoption the last

decade. The idea of a perceptron was proposed as early as the 1940s (McCulloch

and Pitts, 1943; Rosenblatt, 1958). . However, it was not until the 21st century

that computing infrastructure allowed neural networks to be effectively applied.

All neural networks depend on a loss function and backpropagation The

loss function tells the neural network how quantitatively wrong a prediction is.

Popular loss functions include Cross Entropy Loss—often used for logistic regres-
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sion and classification tasks— and Mean Squared Error (Sammut and Webb, 2010).

Backpropagation percolates weight adjustment with the chain rule throughout

the entire network. This is based on the derivative of the error, which is calculated

through the loss function. Additionally, rather than relying on n-gram language

models (Section 2.1), neural language models reference prior context as embed-

dings that represent the word(s). This means that the neural network can under-

stand that “cat” and “dog” are similar, and can be treated similarly, whereas a n-gram

model assumes independence. word2vec (Mikolov et al., 2013) and GloVe (Penning-

ton et al., 2014) embeddings are commonly used pre-trained embeddings. This

powerful innovation allows has led to the current state-of-the-art dependence on

Transformers.

Model architectures have evolved over time in nlp. Convolutional Neu-

ral Networks (cnn) (Krizhevsky et al., 2012) applied to ImageNet kicked off the

applications of deep neural networks. Figure 2.4 shows the architecture of that

model. A cnn has several convolution layers that alter the input, as well as pooling

layers that condense the input. This architecture is relevant for machine vision in

particular since clusters of pixels, rather than an individual one are important for

understanding the content of an image.

We focus on architectures more applicable to nlp: Deep Averaging Net-

works (Section 2.4.3) and Recurrent Neural Networks (Section 2.4.4).
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2.4.3 Deep Averaging Network

The Deep Averaging Network, or dan, classifier proposes a simple archi-

tecture with comparable results to more complicated neural models. Unlike Logistic

Regression, the dan adapts to linguistic versatility by using embeddings in lieu of

specific word features. It has three sections: a “neural-bag-of-word” (nbow) encoder,

which composes all the words in the document into a single vector by averaging the

word vectors; a series of hidden transformations, which give the network depth and

allow it to amplify small distinctions between composed documents; and a softmax

predictor that outputs a class.

The encoded representation r is the averaged embeddings of input words. The

word vectors exist in an embedding matrix E, from which we can look up a specific

word w with E[w]. The length of the document is N . To compute the composed

representation r, the dan averages all of the word embeddings:

r =

∑N
i E[wi]

N
(2.5)

The network weights W, consist of a weight-bias pair for each layer of transfor-

mations (W(hi), b(hi)) for each layer i in the list of layers L. To compute the hidden

representations for each layer, the dan linearly transforms the input and then ap-

plies a nonlinearity: h0 = σ(W(h0)r + b(h0)). Successive hidden representations hi

are: hi = σ(W(hi)hi-1 + b(hi)). The final layer in the dan is a softmax output:

o = softmax(W(o)hL + b(o)). This model is used and modified in Chapter ??.
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2.4.4 Sequence Models

Unlike the dan, Recurrent Neural Networks (rnn) (Elman, 1990) take

into account the sequence of the input, which is important given the ordered nature

of language. The long short-term memory (lstm) (Gers et al., 1999) modifies

the rnn by allowing it to discard past information.

According to Goldberg (2017), Sequence to Sequence refers to a model that

ingests a sequence of text and then generates a sequence of text, rather than a single

classification, as an output. The architecture necessary for this is called Encoder-

Decoder, as the text input is first encoded—meaning a sequence of text has been

transformed into a numerical representation—and then decoded—this representa-

tion is then transformed back into text. Machine translation (Section 2.2.1) is a

clear example where this applies. If a sentence in German needs to be transformed

into English, then the German sentence is first encoded into a numerical represen-

tation and then decoded into an English sentence. Attention (Bahdanau et al.,

2014) looks at different parts of the encoded sequence at each stage in the decoding

process. Visualizing attention provides a mild level of interpetability as the model

looks at a specific part of the input. We use these models in Chapters ?? and ??,

as the current state of the apart for nlp.

The Transformer model simplifies the architecture and dispenses with recur-

sions and convolutions (Vaswani et al., 2017), relying instead entirely on attention.

elmo (Peters et al., 2018), used in Chapter ??, improves on GloVe embed-

dings (Pennington et al., 2014) by allowing a word’s embedding to adjust to the
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context, rather than being committed to having a single word sense. bert improves

the embeddings further by looking at context bidirectionally, meaning that words

that follow a word influence its embedding. These pre-trained embeddings can be

further fine-tuned to accommodate a specific domain’s context.

2.4.5 Evaluation

But how does one evaluate a model, or the underlying quality of data? Model

evaluation is specific to a general task: classifying images correctly for ImageNet or

answering a question for squad. There is a goal of achieving the highest quantitative

accuracy on a particular task (Wang et al., 2019); qualitative analysis of what was

answered correctly in contrast to another model is often an after-thought (Linzen,

2020).

Data evaluation is necessary for crowd-sourcing. For annotation, one can com-

pare the annotations of users to one another using Inter-Annotator Agreement

(iaa). Nowak and Rüger (2010) show that for simple image classification tasks, the

majority vote of unspecialized users is comparable to expert annotation.

However, there is no obvious metric to compute iaa for generation. Machine

translation uses metrics such as BLEU (Papineni et al., 2002), METEOR (Banerjee

and Lavie, 2005), and TERp (Snover et al., 2009) as an automatic approximation of

target quality; however, the quality of the source data—which must be generated by

human users—is never evaluated. In question answering, one may limit the possible

answers to existing pages in Wikipedia, or some other finite source, to avoid string
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matching problems. But, language is complex and multiple users could write equally

valid questions that do not appear similar at the character level. Table 2.2 is one

such example.

The interest in neural techniques and a black box mindset precipitated an

ever-increasing race for data; the largest dataset, not the best model architecture

may be the key differentiating factor. But how to evaluate the influence of data

rather than architecture is an open research question. We explore two examples of

large-scale data projects and the limitations of relying on model accuracy, without

data verification, in Chapter ??.

xxxi



Figure 2.2: Crowd-sourcing can also be used to generate large-scale nlp data. How-

ever, generation creates a quality issue not present in annotation. In this par-

ticular example, Choi et al. (2018) highlight that the teacher does not provide

quality responses. However, the student’s conversation is quite unnatural and has

grammatical issues.
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Message Sender’s

intention

Receiver’s

perception

If I were lying to you, I’d smile and say “that sounds

great.” I’m honest with you because I sincerely thought

of us as partners.

Lie Truth

You agreed to warn me of unexpected moves, then didn’t

. . . You’ve revealed things to England without my permis-

sion, and then made up a story about it after the fact!

Truth Truth

. . . I have a reputation in this hobby for being sincere. Not

being duplicitous. It has always served me well. . . . If you

don’t want to work with me, then I can understand that

. . .

Lie Truth

(Germany attacks Italy)

Well this game just got less fun Truth Truth

For you, maybe Truth Truth

Table 2.6: In contrast to the previous conversations involving crowd workers, con-

versations involving experts generate creative, and even humorous, language. Ad-

ditionally, the annotation of truthfulness is not possible with crowd-sourcing, since

it requires the generator’s real-time knowledge. This conversation snippet is from

the Diplomacy project discussed in Chapter ??.
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Figure 2.3: Hybrid approaches try to control the quality of language generated by

the crowd. MultiWoz (Budzianowski et al., 2018), creates a rigid template for the

user conversation, avoiding the worst quality issues at the expense of user creativity.

Figure 2.4: Krizhevsky et al. (2012)’s cnn architecture.
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